Human activity detection and action recognition in videos using convolutional neural networks

The main aim of this work is to detect and track human activity, and classify actions for two publicly available video databases. In this work, a novel approach of feature extraction from video sequence by combining Scale Invariant Feature Transform and optical flow computation are used where shape, gradient and orientation features are also incorporated for robust feature formulation. |

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.