Pyrimidine derivatives are well known due to their remarkable pharmacological potential in various fields of science, and they are also present in some natural substances like DNA and RNA. These scaffolds manifest diversified biological activities such as antimicrobial, antiinflammatory, anti-HIV, antitubercular, antitumor, antineoplastic, and antimalarial. A pyrimidine ring is constructed when chalcones, amidines, guanidine, nitriles, isocyanates, urea, thiourea, and aminopyrazoles undergo condensation, coupling, or cyclization reactions. In this context, the present review illustrates a variety of novel and efficient synthetic approaches towards the synthesis of pyrimidine and its derivatives that were reported recently. |