The physical and chemical properties of bimetallic nanoparticles can be optimized by tuning the particle composition. In this study, we identified CO adsorption and dissociation energetics on five Pt-Mo nanoparticles at different concentrations, the lowest energy Pt7, Pt6Mo, Pt5Mo2, Pt4Mo3, and Mo7 clusters. We have shown that the CO adsorption and dissociation energies and preferred CO adsorption sites are largely dependent on the composition of the nanoparticles. As the Mo concentration increases, the strength of the C-O internal bond in the adsorption complex decreases, as indicated by a decrease in the C-O stretching frequency. |