Excessive amounts of reactive oxygen species (ROS), unless counterbalanced by antioxidants, can cause cellular damage under oxidative stress conditions; therefore, antioxidative defenses against ROS must be measured. With the development of nanotechnology, nanoparticles have found numerous applications in science, health, and industries. Magnetite nanoparticles (Fe3O4 :MNPs) have attracted attention because of their peroxidase-like activity. In this study, hydroxyl radicals (• OH) generated by MNPs-catalyzed degradation of H2O2 converted the N,N-dimethyl-p-phenylenediamine (DMPD) probe into its colored DMPD•+ radical cation, which gave an absorbance maximum at λ = 553 nm. |