Bài viết "Một số tính chất của hàm số học cơ bản và áp dụng" có nội dung trình bày về định nghĩa, tính chất của các hàm số học; một số hàm số học cơ bản; các bài tập ứng dụng tương tự; . Mời các bạn cùng tham khảo! | Hội thảo khoa học Hưng Yên 25-26 02 2017 MỘT SỐ TÍNH CHẤT CỦA HÀM SỐ HỌC CƠ BẢN VÀ ÁP DỤNG Hoàng Tuấn Doanh THPT Chuyên Hưng Yên 1 Tính chất của các hàm số học Định nghĩa 1 Hàm số học . Hàm số học là hàm số có miền xác định là tập các số nguyên dương và miền giá trị là tập các số phức. Ví dụ 1. a Hàm d n đếm các ước khác nhau của một số tự nhiên n 1 là hàm số học. b Hàm phi-Euler ϕ n là hàm số học. 1 nếu n 1 c Hàm δ Z C δ n là hàm số học. 0 nếu n 2 d Hàm O Z C O n 0 là hàm số học. Định nghĩa 2. Cho hai hàm số học f và g. a Ta định nghĩa tổng của f và g là hàm số học được xác định như sau f g n f n g n n N . b Ta định nghĩa tích của f và g là hàm số học được xác định như sau f .g n f n .g n n N . c Tích chập Dirichle của f và g là hàm số được xác định như sau f g n f d .g n d f d g d 0 n N . d n 0 dd n Tính chất 1. Cho f và g là các hàm số học. Khi đó f g n 0 với mọi n N khi và chỉ khi hoặc f 0 hoặc g 0. Tính chất 2. Hàm số học f là khả nghịch trong A khi và chỉ khi f 1 6 0. 289 Hội thảo khoa học Hưng Yên 25-26 02 2017 2 Một số hàm số học cơ bản Tiếp theo ta xét một vài hàm số học cơ bản. Định nghĩa 3 Giá trị trung bình của hàm số học . Giá trị trung bình F x của một hàm số học f n được xác định bởi công thức F x f n x R n x với tổng tất cả các số nguyên dương n x. Đặc biệt F x 0 với x lt 1. Hàm số F x còn được gọi là hàm tổng của f . Phần nguyên của số thực x được biểu thị bởi x và có duy nhất số nguyên n thỏa mãn n x n 1. Phần thập phân của x là số thực x x x 0 1 . Định nghĩa 4. Hàm g t là hàm đơn thức trên tập I nếu tồn tại một số t0 I sao cho g t là hàm tăng với t t0 và giảm với t t0 . 5 5 1 Ví dụ 2. 2 và . 3 3 3 Mọi số thực x đều có thể viết được duy nhất dưới dạng x x x . logk t Ví dụ 3. Hàm f t là đơn thức trên nửa khoảng 1 với t0 ek . Trong giải tích t thực đã được chứng minh được mỗi hàm là đơn điệu hoặc đơn thức trên đoạn a b là khả tích. Tính chất 3. Cho f n và g n là các hàm số học. Xét hàm tổng F x f n . n x Với a và b là các số nguyên không âm và a lt