On Parametric Surfaces of low degree in \({{\rm P}^3}(C)\)

Parametrized surfaces of low degrees are very useful in applications, especially in Computer Aided Geometric Design and Geometric Modeling. The precise description of their geometry is not easy in general. Here we study some of the corresponding projective complex surfaces of low implicit degree (. smaller than 12). We show that, generically up to linear changes of coordinates, they are classified by a few number of continuous parameters (called moduli). We present normal forms and provide compact implicit equations for these surfaces and for their singular locus together with a geometric interpretation. |

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.