# Independent component analysis P1

## Tham khảo tài liệu 'independent component analysis p1', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Independent Component Analysis. Aapo Hyvarinen Juha Karhunen Erkki Oja Copyright 2001 John Wiley Sons Inc. ISBNs 0-471-40540-X Hardback 0-471-22131-7 Electronic 1 Introduction Independent component analysis ICA is a method for finding underlying factors or components from multivariate multidimensional statistical data. What distinguishes ICA from other methods is that it looks for components that are both statistically independent and nongaussian. Here we briefly introduce the basic concepts applications and estimation principles of ICA. LINEAR REPRESENTATION OF MULTIVARIATE DATA The general statistical setting A long-standing problem in statistics and related areas is how to find a suitable representation of multivariate data. Representation here means that we somehow transform the data so that its essential structure is made more visible or accessible. In neural computation this fundamental problem belongs to the area of unsupervised learning since the representation must be learned from the data itself without any external input from a supervising teacher . A good representation is also a central goal of many techniques in data mining and exploratory data analysis. In signal processing the same problem can be found in feature extraction and also in the source separation problem that will be considered below. Let us assume that the data consists of a number of variables that we have observed together. Let us denote the number of variables by m and the number of observations by T. We can then denote the data by Xi t where the indices take the values i 1 m and t 1 T. The dimensions an can be very large. 1 2 INTRODUCTION A very general formulation of the problem can be stated as follows What could be a function from an m-dimensional space to an n-dimensional space such that the transformed variables give information on the data that is otherwise hidden in the large data set. That is the transformed variables should be the underlying factors or components .

TÀI LIỆU LIÊN QUAN
9    206    0
31    1173    49
1    914    80
89    258    13
80    341    33
51    286    10
95    398    39
16    10    4
47    31    2
1    455    20
TÀI LIỆU XEM NHIỀU
13    40228    2353
3    24487    246
25    23861    4235
16    19645    2833
20    19183    1538
1    18898    609
14    18729    2942
37    15783    2952
3    15286    319
1    13772    123
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
13    69    1    22-02-2024
9    417    1    22-02-2024
12    204    2    22-02-2024
5    7    1    22-02-2024
6    239    1    22-02-2024
432    233    1    22-02-2024
10    38    1    22-02-2024
4    63    2    22-02-2024
258    175    5    22-02-2024
5    65    1    22-02-2024
147    48    1    22-02-2024
12    65    3    22-02-2024
7    383    1    22-02-2024
11    203    1    22-02-2024
9    61    1    22-02-2024
58    145    24    22-02-2024
8    8    1    22-02-2024
12    51    1    22-02-2024
7    6    1    22-02-2024
11    280    1    22-02-2024
TÀI LIỆU HOT
3    24487    246
13    40228    2353
3    2577    81
580    4831    361
584    3120    97
62    6406    1
171    5492    715
2    2893    78
51    4223    198
53    4497    187
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.