# Independent component analysis P14

## Overview and Comparison of Basic ICA Methods In the preceding chapters, we introduced several different estimation principles and algorithms for independent component analysis (ICA). In this chapter, we provide an overview of these methods. First, we show that all these estimation principles are intimately connected, and the main choices are between cumulant-based vs. negentropy/likelihood-based estimation methods, and between one-unit vs. multiunit methods. In other words, one must choose the nonlinearity and the decorrelation method. We discuss the choice of the nonlinearity from the viewpoint of statistical theory. In practice, one must also choose the optimization method. We compare the algorithms experimentally,. | Independent Component Analysis. Aapo Hyvarinen Juha Karhunen Erkki Oja Copyright 2001 John Wiley Sons Inc. ISBNs 0-471-40540-X Hardback 0-471-22131-7 Electronic 14 Overview and Comparison of Basic ICA Methods In the preceding chapters we introduced several different estimation principles and algorithms for independent component analysis ICA . In this chapter we provide an overview of these methods. First we show that all these estimation principles are intimately connected and the main choices are between cumulant-based vs. negentropy likelihood-based estimation methods and between one-unit vs. multiunit methods. In other words one must choose the nonlinearity and the decorrelation method. We discuss the choice of the nonlinearity from the viewpoint of statistical theory. In practice one must also choose the optimization method. We compare the algorithms experimentally and show that the main choice here is between on-line adaptive gradient algorithms vs. fast batch fixed-point algorithms. At the end of this chapter we provide a short summary of the whole of Part II that is of basic ICA estimation. OBJECTIVE FUNCTIONS VS. ALGORITHMS A distinction that has been used throughout this book is between the formulation of the objective function and the algorithm used to optimize it. One might express this in the following equation ICA method objective function optimization algorithm. In the case of explicitly formulated objective functions one can use any of the classic optimization methods for example stochastic gradient methods and Newton 273 274 OVERVIEW AND COMPARISON OFBASIC ICA METHODS methods. In some cases however the algorithm and the estimation principle may be difficult to separate. The properties of the ICA method depend on both of the objective function and the optimization algorithm. In particular the statistical properties . consistency asymptotic variance robustness of the ICA method depend on the choice of the objective function the algorithmic .

TÀI LIỆU LIÊN QUAN
9    206    0
31    1173    49
1    914    80
89    258    13
80    341    33
51    286    10
95    398    39
16    10    4
47    31    2
1    455    20
TÀI LIỆU XEM NHIỀU
13    40288    2363
3    24536    247
25    23896    4239
16    19678    2833
20    19212    1538
1    18927    611
14    18772    2946
37    15820    2952
3    15346    321
1    13877    126
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
7    64    1    02-03-2024
7    8    1    02-03-2024
2    43    1    02-03-2024
140    55    3    02-03-2024
289    81    1    02-03-2024
25    172    11    02-03-2024
5    61    1    02-03-2024
222    5    1    02-03-2024
103    431    5    02-03-2024
27    57    1    02-03-2024
11    278    1    02-03-2024
11    172    2    02-03-2024
125    237    1    02-03-2024
10    54    1    02-03-2024
8    55    1    02-03-2024
50    144    1    02-03-2024
8    146    1    02-03-2024
118    36    1    02-03-2024
9    8    1    02-03-2024
195    8    1    02-03-2024
TÀI LIỆU HOT
3    24536    247
13    40288    2363
3    2595    81
580    4849    361
584    3138    97
62    6430    1
171    5504    716
2    2918    78
51    4248    198
53    4514    187
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.