Đề thi KSCL học kì 1 môn Toán lớp 8 năm 2022-2023 có đáp án - Trường THCS Đông Ninh

‘Đề thi KSCL học kì 1 môn Toán lớp 8 năm 2022-2023 có đáp án - Trường THCS Đông Ninh’ sau đây sẽ giúp bạn đọc nắm bắt được cấu trúc đề thi, từ đó có kế hoạch ôn tập và củng cố kiến thức một cách bài bản hơn, chuẩn bị tốt cho kỳ thi sắp. | PHÒNG GD amp ĐT ĐÔNG SƠN BÀI THI KHẢO SÁT CHẤT LƯỢNG HỌC KỲ I TRƯỜNG THCS ĐÔNG NINH NĂM HỌC 2022 - 2023 Môn Toán Lớp 8 Thời gian làm bài 90 phút Họ và tên học sinh Lớp 8 . Số báo danh Giám thị 1 Giám thị 2 Số phách Điểm Giám khảo 1 Giám khảo 2 Số phách ĐỀ BÀI Bài 1 1 5 điểm Phân tích các đa thức sau thành nhân tử a 4x2 6xy b x2. x - 3 4. 3 - x Bài 2. 2 5 điểm 1. Chứng tỏ rằng biểu thức sau không phụ thuộc vào giá trị của biến M x 2 x 2 2 x 4 x x 2 1 x 2. Cho đa thức A 2x3 - 6x2 2x a và đa thức B x - 2. 1 a Tính giá trị của đa thức B khi x 2 b Tìm a để A chia hết cho B 2 2 2 x 1 Bài 3. 2 0 điểm Cho A 2 2 x 2 x 1 2 x x 4 x x 2x với a Rút gọn biểu thức A. b Tìm giá trị nguyên của x để A nhận giá trị nguyên. Bài 4. 3 0 điểm Cho tam giác ABC vuông tại A AB ĐÁP ÁN VÀ BIỂU ĐIỂM ĐỀ HỌC KÌ 1 TOÁN 8 năm 2022 - 2023 Bài Phần Nội dung Điểm a 4 x 2 6 xy 2 x 2 x 3 y 0 75 Bài 1 x2 . x 3 4. 3 x x2 . x 3 4. x 3 x 3 x2 4 x 3 x 2 x 2 0 75 b M x 2 x 2 2 x 4 x x 2 1 x 1đ M x 8 x x x 3 3 1. M 8 Vậy giá trị biểu thức M không phu thuộc giá trị của biến. a Thay x -1 2 vào B ta được B -1 2 2 -5 2 0 5 b Xét 2x3 - 6x2 2x a x - 2 2x3- 4x2 2x2 - 2x - 2 Bài 2 -2x2 2x a đ -2x2 4x - 2x a - 2x 4 a-4 Để đa thức 2x3 - 6x2 2x a chia hết cho đa thức x - 2 thì đa thức dư phải bằng 0 nên gt a - 4 0 gt a 4 Cách 2 Đặt f x 2x3 - 6x2 2x a chia hết cho đa thức x 2 thì f 2 0 a 0 - 4 a 0 a 4. 2 2 2 x 1 A 2 2 2 x x 4 x x 2x 2 2 2 x 1 A 2 x x 2 x 2 x x x 2 2 x 2 2 2 x 2 x 1 a A Bài 3 x 2 x 2 x 2 x 2 x x 2 x x 2 2x 4 2 2x 4 x 1 A x 2 x 2 x x 2 2x 6 x 3 A x 2 x 2 x x 2 x 2 1 Để P thuộc Z thì Z Z x 1 1 1 x 2 0 b x 1 x 1 Kết hợp đkxđ ta được x 0. Bài 4 3đ HS vã hình và gt kl a Tứ giác AMNC là hình gì Vì sao 1đ Chứng minh MN là đường trung bình của tg ABC AMNC là hình thang Mà góc A 900 AMNC là hình thang vuông b Chứng minh tứ giác ADBN là hình thoi M là trung điểm của AB và DN ADBN là hình bình hành Mà AB vuông góc với DN ADBN là hình thoi Có MN 1 2AC 4cm DN 2 MN 8cm. .

Bấm vào đây để xem trước nội dung
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.