Bài giảng Toán cao cấp A1 (65 trang)

Bài giảng Toán cao cấp A1 được biên soạn gồm các nội dung chính sau: Phép tính vi phân hàm một biến; phép tính tích phân hàm một biến; phép tính vi phân hàm nhiều biến; lý thuyết chuỗi. Mời các bạn cùng tham khảo! | Toán cao cấp A1 Chương 1. PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN Bài 1. GIỚI HẠN CỦA DÃY SỐ THỰC . Các định nghĩa Định nghĩa 1. Một hàm số f đi từ tập các số nguyên dương vào tập số thực f theo đó với mỗi số nguyên dương n cho tương ứng với duy nhất một số thực xn . Mỗi hàm số như vậy được gọi là một dãy số thực và được biểu diễn như sau x1 x2 . xn . viết gọn là xn . Số xn được gọi là số hạng tổng quát. Ví dụ 1. Cho một hàm số f được xác định như sau f n xn 1 3n . Ta có x1 4 x2 7 x3 10 x4 13 . Khi đó ta có dãy số 4 7 10 13 . 1 3n . Số hạng tổng quát xn 1 3n . Định nghĩa 2. Dãy xn được gọi là hội tụ về số thực a nếu 0 N N sao cho n N thì xn a . Và khi đó a được gọi là giới hạn của dãy số xn kí hiệu lim xn a hay xn a khi n . n Ví dụ minh rằng dãy số sau đây hội tụ về 2017. 1 1 1 1 1 2018 2017 2017 2017 2017 . 2017 . 2 3 4 5 n 1 1 có xn 2017 xn 2017 . Ta cần chứng minh n n 1 0 N N sao cho n N thì xn 2017 n 1 1 Thật vậy với mọi cho trước ta chọn N là phần nguyên của khi đó 1 1 n N n đpcm . n 2n Ví dụ 3. Chứng minh rằng lim 0. n n 1 2 1 Toán cao cấp A1 2n cần chứng minh 0 N N sao cho n N thì . Nhận n 1 2 2n 2n 2 2 2 2 thấy rằng để n vậy với mọi cho trước ta chọn N n2 1 n2 n n 2 2 2n khi đó n N n 2 đpcm . n n 1 Định nghĩa 3. Giới hạn tại vô cực lim xn E 0 N E sao cho n N E thì xn E . n lim xn E 0 N E sao cho n N E thì xn E . n Ví dụ 4. Chứng minh rằng lim a n a 1 . n cần chứng minh E 0 N E sao cho n N E thì a n E . Nhận thấy rằng ln E để a n E ln a n ln E n ln a ln E n . Vậy E 0 ta chọn ln a ln E ln E N E khi đó n N E thì n a n E đpcm . ln a ln a Định nghĩa 4. Dãy xn được gọi là bị chặn trên nếu tồn tại số thực a sao cho xi a xi xn . Dãy xn được gọi là bị chặn dưới nếu tồn tại số thực a sao cho xi a xi xn . Dãy xn được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới nghĩa là nếu tồn tại số thực a sao cho xi a xi xn . . Các định lí về giới hạn của dãy số chuẩn hội tụ 1 Nếu yn xn zn n n0 với n0 là số tự nhiên lớn hơn 0 bất

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.