Bài giảng 20: Phuong trình và bất phương trình siêu việt

Bài giảng 20: Phuong trình và bất phương trình siêu việt Tài liệu mang tính chất tham khảo, giúp ích cho các bạn tự học, ôn thi, với phương pháp giangr hay, thú vị, rèn luyện kỹ năng giải đề, nâng cao vốn kiến thức cho các bạn trong các kỳ thi sắp tới. Tác giả hy vọng tài liệu này sẽ giúp ích cho các bạn. | Bài giảng số 20 PHUUIXI6 TRÌNH VÀ BẮT PHUDNG TRÌNH SIÊU VIỆT Bài giảng này đề cập đến các phương pháp cơ bản giãi phương trình và bất phương trình siêu việt tên gọi chung cùa phương trình bất phương trình mũ và lôgarit . Các dạng bài toán này luôn luôn có mặt trong các đề thi tuyển sinh vào Đại học Cao đảng trong những năm 2002-2009 nhất là với các đề thi ở phần tự chọn cho trong chương trình nâng cao. 1. PHƯƠNG TRÌNH Mũ VÀ PHƯƠNG TRÌNH LÔGARIT Đe giải phương trinh mũ và phương trình lôgarit ta làm như sau - Đặt điều kiện để phương trình có nghĩa. Chú ý rằng ngoài các điều kiện thông thường cần nhớ đến điều kiện sau Đe logf X g x có nghĩa ta cần có Ị f x o f x 1 ịg x 0 - Bằng các phép biến đổi cơ bản về hàm số mũ hoặc lôgarit hoặc dùng phép đặt ẩn phụ phép lôgarit hóa ta quy phương trình đã cho về các phương trinh mũ phương trình lôgarit cơ bản sau al x b a 0 logf x g x logf X h x Các dạng toán cơ bản Loại 1 Phương pháp đặt ẩn phụ để giải phương trình siêu việt Bằng cách đặt ẩn phụ ta quy phương trình mũ phương trinh lôgarit ban đầu về phương trình đại số thông thường phương trình chứa hoặc không chứa căn thức . Giải các phương trình trung gian này sau đó sẽ quy về giải các phương trình mũ lôgarit cơ bàn để tim ra nghiệm cùa phương trình ban đầu. Thí dụ 1 Đề thi tuyển sinh Đại học khối A - 2008 Giải phương trình log 2x3 x- 1 logxtl 2x- 1 4 1 . Giải Điều kiện để 1 có nghiệm là 2x-l 0 2x-1 1 I X 1 0 X l 1 x 2 2 . 2x2 X -1 0 lx 1 358 Áp dụng công thức đổi cơ số ta có 21ogx 1 2x- 21ogx 2x-1 4 3 . Đặt t logx i 2x - 1 khi đó 3 có dạng t t ê 2 ogx i 2x -1 1 1 2 4x2 -5x 0 x 2 5 L 4 2 Thí dụ 2 Đe thì tuyển sinh khối A - 2006 Giải phương trình 4. 12 - 18 0 1 . Giải Vì 27 0 nên ta có -ÍIÍ -0 -- Đặt t 0 khi đó 2 có dạng 3t 4t2-1-2 0 o t l 2 3t-2 0 t I dot 0 . PY -2 Vậy ta có c X 1. Thí dụ 3 Đề thi tuyển sinh khối B - 2007 Giải phương trình Vx -1 5 2 1 -2 2 0 l . Giải Do 5 2 - 1 2 1 1 nên nếu đặt t 5 2-1 0 thì 1 o t- - - 2V2 0 t2-2x 2t l 0 359 Thi dụ 4 Đe thi .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.