Thuật toán Algorithms (Phần 52)

Tham khảo tài liệu 'thuật toán algorithms (phần 52)', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | LINEAR PROGRAMMING 503 The Simplex Method Simplex is the name commonly used to describe a general approach to solving linear programs by using pivoting the same fundamental operation used in Gaussian elimination. It turns out that pivoting corresponds in a natural way to the geometric operation of moving from point to point on the simplex in search of the solution. The several algorithms which are commonly used differ in essential details having to do with the order in which simplex vertices are searched. That is the well-known algorithm for solving this problem could more precisely be described as a generic method which can be refined in any of several different ways. We ve encountered this sort of situation before for example Gaussian elimination or the Ford-Fulkerson algorithm. First as the reader surely has noticed linear programs can take on many different forms. For example the linear program above for the network flow problem has a mixture of equalities and inequalities but the geometric examples above use only inequalities. It is convenient to reduce the number of possibilities somewhat by insisting that all linear programs be presented in the same standard form where all the equations are equalities except for an inequality for each variable stating that it is nonnegative. This may seem like a severe restriction but actually it is not difficult to convert general linear programs to this standard form. For example the following linear program is the standard form for the three-dimensional example given above Maximize X x2 Z3 subject to the constraints Xj x2 y 5 X 4z2 7 2 45 2zi x2 2 3 27 3zi 4 2 Va 24 x3 T y5 4 Xi x2 x3 y1 y2 y3 y4 y5 0. Each inequality involving more than one variable is converted into an equality by introducing a new variable. The y s are called slack variables because they take up the slack allowed by the inequality. Any inequality involving only one variable can be converted to the standard nonnegative constraint simply by renaming the

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.