Lập Trình C# all Chap "NUMERICAL RECIPES IN C" part 51

Tham khảo tài liệu 'lập trình c# all chap "numerical recipes in c" part 51', công nghệ thông tin phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Polynomial Approximation from Chebyshev Coefficients 197 Polynomial Approximation from Chebyshev Coefficients You may well ask after reading the preceding two sections Must I store and evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a transformed variable y Can t I convert the ck s into actual polynomial coefficients in the original variable x and have an approximation of the following form m 1 f x X9kxk k 0 Yes you can do this and we will give you the algorithm to do it but we caution you against it Evaluating equation where the coefficient g s reflect an underlying Chebyshev approximation usually requires more significant figures than evaluation of the Chebyshev sum directly as by chebev . This is because the Chebyshev polynomials themselves exhibit a rather delicate cancellation The leading coefficient of Tn x for example is 2n-1 other coefficients of Tn x are even bigger yet they all manage to combine into a polynomial that lies between 1. Only when m is no larger than 7 or 8 should you contemplate writing a Chebyshev fit as a direct polynomial and even in those cases you should be willing to tolerate two or so significant figures less accuracy than the roundoff limit of your machine. You get the g s in equation from the c s output from chebft suitably truncated at a modest value of m by calling in sequence the following two procedures include void chebpc float c float d int n Chebyshev polynomial coefficients. Given a coefficient array c this routine generates a coefficient array d such that Xn 1 d yk Xn 1 c Tk y cq 2. The method is Clenshaw s recurrence but now applied algebraically rather than arithmetically. int k j float sv dd dd vector 0 n-1 for j 0 j n j d j dd j d 0 c n-1 for j n-2 j 1 j-- for k n-j k 1 k sv d k d k d k-1 -dd k dd k sv sv d 0 d 0 -dd 0 c j dd 0 sv for j n-1 j 1 j-- d j d j-1 -dd j d 0 -dd 0 c 0 free_vector dd 0 n-1 Sample page from .

Bấm vào đây để xem trước nội dung
TÀI LIỆU LIÊN QUAN
5    176    1
5    255    1
5    106    0
5    121    1
6    103    1
6    107    1
6    121    1
6    103    0
6    140    0
TÀI LIỆU MỚI ĐĂNG
272    22    1    28-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.