Handbook of mathematics for engineers and scienteists part 11

The line connecting the midpoints of two sides of a triangle is called a midline of the triangle. The midline is parallel to and half as long as the third side (Fig. ). Let rj, b, and c be the lengths of the sides of a triangle; let Q, /?, and 7 be the respective opposite angles (Fig. 3Aa): let B and r be the circumradius and the inradius, respectively; and let p = -j(a +h + c) be the semiperimeter. | 38 Elementary Functions . Hyperbolic functions of multiple argument. cosh 2x 2 cosh2 x -1 sinh 2x 2 sinh x cosh x cosh 3x -3 cosh x 4 cosh3 x sinh 3x 3 sinh x 4 sinh3 x cosh 4x 1 - 8 cosh2 x 8 cosh4 x sinh4x 4 cosh x sinh x 2 sinh3 x cosh 5x 5 cosh x -20 cosh3 x 16 cosh5 x sinh 5x 5 sinh x 20 sinh3 x 16 sinh5 x. 2 z fe 1 cosh nx 2 -1 cosh x --------C - 22 -2k-2 cosh x -2k-2 2 k 1 -k-2 k 0 -1 2 sinh nx sinh x 2 -k-1 C -k-1 cosh x -2k-1. k 0 Here C are binomial coefficients and A stands for the integer part of the number A. . Hyperbolic functions of half argument. sinh x sign J . 1 x I cosh x 1 cosh A -------- 2 V 2 x sinh x cosh x - 1 tanh r -T--- 2 cosh x 1 sinh x x sinh x C H1 - z 1 2 cosh x - 1 cosh x 1 sinh x . Differentiation formulas. d sinh x d cosh x sinh x dx dx d tanh x 1 d coth x 1 dx cosh2 x dx sinh2 x . Integration formulas. sinh x dx cosh x C cosh x dx sinh x C tanh x dx ln cosh x C coth x dx ln sinh x C where C is an arbitrary constant. . Inverse Hyperbolic Functions 39 . Expansion in power series. 2 -4 -6 -2n cp rp - ÍỴ n 1 -1 . x . x . x . x cosh x I x2n 1 ------ 2n 1 z 2 22n - B x 1 ------ 7---------- 2n 22n B2n x2n 1 -------------- 3 5 7 zy -1 zy zy XXX sinh x x x3 2x5 17x7 anh x x - T 55 - 515 35 coth x 757T---- 1 n-1 x 3 45 945 2n where Bn are Bernoulli numbers see Subsection . x to x to x n 2 x n . Relationship with trigonometric functions. sinh ix i sin x cosh ix cos x tanh ix i tan x coth ix i cot x i2 1. . Inverse Hyperbolic Functions . Definitions. Graphs of Inverse Hyperbolic Functions . Definitions of inverse hyperbolic functions. Inverse hyperbolic junctions are the functions that are inverse to hyperbolic functions. The following notation is used for inverse hyperbolic functions arcsinh x sinh-1 x arccosh x cosh-1 x arctanh x tanh-1 x arccoth x coth-1 x inverse of hyperbolic sine inverse of hyperbolic cosine inverse of hyperbolic tangent inverse of hyperbolic .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.