An allhude of a triangle is a straight line passing through a vertex and perpendicular to the straight line containing the opposite side (Fig. ). The three altitudes of a triangle intersect in a single point, called the onhocemer of the triangle. | . Spherical Trigonometry 73 TABLE Basic properties and relations characterizing spherical triangles No. The name of property Properties and relations 1 Triangle inequality The sum of lengths of two sides is greater than the length of the third side. The absolute value of the difference between the lengths of two sides is less than the length of the third side a b c a - b c 2 Sum of two angles of a triangle The sum of two angles of a triangle is greater than the third angle increased by n a 3 n y 3 The greatest side and the greatest angle The greatest side is opposite the greatest angle a b if a 3 a b if a 3 4 Sum of angles of a triangle The sum of the angles lies between n and 3n n a 3 y 3n 5 Sum of sides of a triangle The sum of sides lies between 0 and 2n 0 a b c 2n 6 The law of sines sin a sin b sin c sin a sin 3 sin y 7 The law of cosines of sides cos c cos a cos b sin a sin b cos y 8 The law of cosines of angles cos y - cos a cos 3 sin a sin 3 cos c 9 Half-angle formulas . y 1 sin p - a sin p - b y 1 sin p sin p - c 2 V sin a sin b 2 V sin a sin b t y sin p - a sin p - b 2 V sin p sin p - c 10 Half-side theorem . c - sin P sin P - y c sin P - a sin P - 3 2 V sin a sin 3 2 V sin a sin 3 c 1 -sin P sin P - y tan 2 V sin P - a sin P - 3 11 Neper s analogs - - - ri Iri Iri Ö öl öl - ç fS c ọ 8 -ẵ -c 1 o 1 Irl 1 CN Cl 1 1 ö 1 Ö ờ Il II il II Y - 1 L. 1 1 1 KI 1 r ö ö 1 Ö 1 á o O - X to Q 00 . U ri l N - N r- Ç o Ỗ 8 12 D Alembert Gauss formulas sin 1 sin 0 1 sin c cos Oz sin Y- sin 0 1 cos c cos 22 2 2 2 2 2 2 cos Y sin 2 sin c sin Ộ2 cos Y cos -b cos c sin a ß 22 22 22 22 13 Product formulas sin a cos ß cos b sin c - cos a sin b cos c sin a cos b cos ß sin c - cos a sin ß cos Y 14 The circumradius R -r- sin P - a sin P - ß sin P - y . a . cot R J i p i cot 2. sin a - P 15 The inradius r . 1 sin p - a sin p - ß sin p - y . a . x tan r ỳ 2 - tan -2 sin p - a 74 Elementary Geometry TABLE continued Basic properties and relations characterizing spherical .