Handbook of mathematics for engineers and scienteists part 27

where h is the length of the altitude drawn to the hypotenuse; moreover, the altitude cuts the hypotenuse into segments of lengths m and n. In a right triangle, the length of the median mc drawn from the vertex of the right angle coincides with the circumradius B and is equal to half the length of the hypotenuse c7 mc = R = jc. The inradius is given by the formula r = -(a -\-b-c). The area of the right triangle is S = aha = -a5(see also Paragraphs to ). | 150 Analytic Geometry TABLE Classification of quadrics central surfaces 5 0 Class 0 or 7 0 SS 0 and 7 0 but not both Nondegenerate surfaces A 0 A 0 Ellipsoid x2 y2 z2 a2 b2 c2 Two-sheeted hyperboloid x2 y2-z2 _ -t a2 b2 c2 A 0 Imaginary ellipsoid x 4 - a2 b2 c2 One-sheeted hyperboloid x2 f- f _ 1 a2 b2 c2 Imaginary cone with real vertex Real cone Degenerate surfaces A 0 S -1 o XL y zL _ 0 a2 b2 c2 TABLE Classification of quadrics central surfaces S 0 Class ar Nondegenerate surfaces A 0 Degenerate surfaces A 0 id type A 0 7 0 7 0 Hyperbolic paraboloid x2 y2 _ 7 7 21 7 0 A 0 Cylindrical surfaces a 0 Elliptic paraboloid x2 y2 p f 2Z Elliptic cylinder Hyperbolic cylinder .2 2 x y _ 1 a2 b2 Parabolic cylinder y2 _ 2px Imaginary aS 0 x2 y2 _ -i a2 b2 1 Real aS 0 x2 i a2 b2 1 Reducible surfaces a 0 Pair of imaginary planes intersecting in a real straight line x2 y2 77 _ 0 a2 b2 Pair of real intersecting planes 2 2 x y _ 0 a2 b2 0 Pair of real reducible planes S _ 0 x2 _ 0 Pair of imaginary parallel planes S 0 2 2 x _ -a Pair of real parallel planes S 0 x a2 . Characteristic quadratic form of quadric. The characteristic quadratic form F x y z aux2 a22y2 a33z2 2a12xy 2a13xz a23yz corresponding to equation and its characteristic equation an A a12 a13 a12 a13 a22 A a23 a23 a33 A 0 or A3 SA2 TA Ö 0 permit studying the main properties of quadrics. . Quadric Surfaces Quadrics 151 The roots A1 A2 and A3 of the characteristic equation are the eigenvalues of the real symmetric matrix aij and hence are always real. The invariants S T and 6 can be expressed in terms of the roots A1 A2 and A3 as follows S Ai A2 A3 T A1A2 A1A3 A2A3 6 A1A2A3. . Diameters and diameter plane. The locus of midpoints of parallel chords of a quadric is the diameter plane conjugate to these chords or the direction of these chords . The diameter plane conjugate to the chords with direction cosines cos a cos 3 and cos 7 is determined by the .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.