A textbook of Computer Based Numerical and Statiscal Techniques part 4

A textbook of Computer Based Numerical and Statiscal Techniques part 4. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 16 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Percentage Error in Sr inn 100 r x 100 -------x r r f SR A 2 dR dr Because S _ SR _ 100 SR _ 100 SR h r 2 r 2 fr 2r2 3r h On substituting Percentage Error in r and value of SR from 1 100 . --------5-x----------x h -------------- 2 x 2 11 11x Sh 100 SR 100 SR h x 100 x -----. h h 2 _ h f r 2 1 I 2 W 2 100SX 100 x -----------r -----x------------ . r 2 1 20 11 11 2F 2 J Example 29. Two sides and included angle of a triangle are cm cm and 45 respectively. Find the possible error in the area of a triangle if the error in sides is correct to a millimeter and the angle is measured correct to one degree. 1 Sol. Assume that the area of the triangle ABC X bc sin A Error in the measurement of sides and angles are Zb cm Zc cm and ZA 1 x radians 2 ax 1 . c sin A db 2 ax 1 ax 1 b sin A and bc cos A dc 2 dA 2 SX dX Sb s ax Sc sa dX ab dc dc 1111 1 1 x x x- x x x- x x x x- 2 y 2 2 V2 2 y 2 1 - x x x x V2 - sq. cm. ERRORS AND FLOATING POINT 17 Example 30. The error in the measurement of area of a circle is not allowed to exceed . How accurately the radius should be measured. Sol. Area of the circle nr2 A say dA 2nr dr Percentage Error in A x 100 A Therefore 1 2 SA x A nr 100 200 Percentage Error in Sr r - x 100 r 1 2 100 SA 100 200 nr r dA r 2n2 dr 1 . 4 Example 31. The error in the measurement of the area of a circle is not allowed to exceed . How accurately should the diameter be measured nd2 Sol. Let d is the diameter of a circle and then its area is given by A . Therefore SA nd dd 2 Since SA Sd therefore Sd Now Percentage Error in SA A x 100 A Therefore SA 01XA A Xnd2 100 4 Similarly Percentage Error in d x 100 d 100 SA 100 xnd2 2 -----x - x d dA d 4 nd dd xndf 2 ---------x 4d

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.