A textbook of Computer Based Numerical and Statiscal Techniques part 13

A textbook of Computer Based Numerical and Statiscal Techniques part 13. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 106 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 1. Construct a forward difference table for the following values x 0 5 10 15 20 25 f x 7 11 14 18 24 32 Sol. Forward difference table for given data is x y Ay A2 y a3 y A4 y a5 y 0 5 10 15 20 25 7 11 14 18 24 32 4 3 4 6 8 -1 1 2 2 2 1 0 -1 -1 0 Example 2. If y x3 x2 - 2x 1 calculate values of y for x 0 1 2 3 4 5 and form the difference table. Alsofind the value of y at x 6 by extending the table and verify that the same value is obtained by substitution. Sol. For x 0 1 2 3 4 5 we get the values of y are 1 1 9 31 73 141. Therefore difference table for these data is as x y Ay A2 y a3 y 0 1 0 1 1 8 8 6 2 9 22 14 6 3 31 42 20 6 4 73 68 26 6 5 141 32 6 100 Because third differences are zero therefore A3y3 6 A2y4 - A2y3 6 A2y4-26 6 A2y4 32 Now A2y4 32 Ay5 - Ay4 32 CALCULUS OF FINITE DIFFERENCES 107 Ay5 - 68 32 Ay5 100 Further Ay5 100 y6 - y5 100 y6 - 141 100 y6 241 Verification For given function x3 x2 - 2x 1 at x 6 y 6 6 3 6 2 - 2 6 1 241 Hence Verified. Example 3. Given f 0 3 f 1 12 f 2 81 f 3 200 f 4 100 and f 5 8. From the difference table and find A5 f 0 . Sol. The difference table for given data is as follows x f x Af x A2 f x A3 f x A 4 f x A5 f x 0 3 9 1 12 69 60 -10 2 81 119 50 -269 -259 755 3 200 -100 -219 227 496 4 100 -92 8 5 8 Hence A5f 0 755. Example 4. Construct the forward difference table given that x 5 10 15 20 25 30 y 9962 9848 9659 9397 9063 8660 and point out the values of A2y10 A4y5. Sol. For the given data forward difference table is as x y Ay a2 y a3 y A4 y 5 9962 -114 10 9848 -189 -75 2 15 9659 -262 -73 1 -1 20 9397 -334 -72 3 2 25 9063 -403 -69 30 8660 From the table A2y10 A4y5 is as A2y10 -73 and A4y5 -1. 108 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 5. Find f 6 given that f 0 -3 f 1 6 f 2 8 f 3 12 the third differences being constant. Sol. For given data we construct the difference table x f x Af x A2f x A3 f x 0 -3 9 1 6 -7 2 9 2 8 2 4 3 12 We have f 6 f 0 6 E6

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.