A textbook of Computer Based Numerical and Statiscal Techniques part 14

A textbook of Computer Based Numerical and Statiscal Techniques part 14. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 116 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 14. Evaluate the following I. A2 cos 2x II. A2 3ex III. A tan-1 x IV. A x cos x the interval of differencing being h. Sol. I. We have A2 cos 2x E - 1 2 cos 2x because A E - 1. E2 - 2 E 1 cos 2x E2 cos 2x - 2E cos 2x cos 2x cos 2x 4h - 2 cos 2x 2h cos 2x cos 2x 4h - cos 2x 2h - cos 2x 2h cos 2x 2 sin 2x 3h sin - h - 2 sin 2x h sin h - 2 sin h sin 2x 3h - sin 2x h - 2 sin h 2 cos 2x 2h sin h - 4 sin2 h cos 2x 2h . II. We have A 3ex 3 A ex 3 ex h - ex 3ex eh-1 A2 3ex A A3ex A 3ex eh-1 3 eM Aex 3 eh-1 ex h - ex 3 eM e eh-1 3ex eM 2. III. We have A tan -1 x tan-1 x h - tan-1 x tan-1 tan-1 IV. We have A x cos x A x A cos x x h - x cos x h - cos x h 2 sin 2-V s n -h h h h - 2 sin I x I sin 2 x h -x 1 x h x h_ 1 xh x2 Now sin x h E E sin x h Example 15. Evaluate sin x h ---------- where h being the interval of differencing. E E sin x h Sol. To evaluate the given problem we use the operator property that is A E - 1 A2 srn x h E - 1 2 sin X h E -1 2 sin x h sin x 2h E CALCULUS OF FINITE DIFFERENCES 117 E - 2 E-1 sin x h E2 - 2E 1 sin x h sin x 2h sin x 2h - 2 sin x h sin x sin x 3h - 2 sin x 2h sin x h sin x 2h 2 sin x 2h cos h -1 2 sin x h cos h - 1 ---------------------- sin x 2h 2 cos h - 1 sin x h - 1 . r i Example 16. Show that B m 1 n -1 m Am I I where m is a positive integer. Sol. We know that ï e nx dx - . o n Therefore ra Am J e nx dx o Am 1 n or ra J Am e nx o dx Am 1 n where for Am e nx n is to be regarded variable and x is to be regarded as constant. Now Ame-nx Am-1 e - e-nx Am-1 e-nx e-x - 1 e-x - 1 Am-1 e-nx e-x - 1 2 Am-2 e-nx . e-x - 1 m e-nx Therefore J0 e nx e x -1 m dx Am Put e-x z so that -e-x dx dz or dx - 1 z dz. or or or Then J0 zn z-1 m -1 z dz Am n 1 n-1 1 -1 m J z 1 - z m dz Am I - 1 1 zn-1 1 - z m 1 -1 dz -1 m Am I n o 1 B m 1 n -1 m Am I I n 118 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 17. Show that ex ex. Eex A 2ex the interval of differencing being h. Sol. Let f x

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
24    17    1    23-11-2024
187    24    1    23-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.