A textbook of Computer Based Numerical and Statiscal Techniques part 15

A textbook of Computer Based Numerical and Statiscal Techniques part 15. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 126 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Similarly 2 Similarly An 1 -1 -2 -3 . -n x x x 1 x 2 . x n -1 nn x x 1 x 2 . x n A abcx a A bcx a bc x 1 - bcx a bcx bc - bcx a bc-1 bcx. A2 abcx AA abx A a bc - 1 bcx a bc - 1 Abcx a bc -1 2 bcx Proceeding in the same manner we get An abcx a bc - 1 nbcx. Example 29. If p q r and s be the successive entries corresponding to equidistant arguments in a table show that when third differences are taken into account the entry corresponding to the argument half way between the arguments of q and r is A -1B where A is the arithmetic mean of q r and B is the arithmetic mean of 3q - 2p - s and 3r - 2s - p. Sol. On taking h being the interval of differencing the difference table is as x ux Aux A2 ux A3 ux a p q - p a h q r - q r - 2q p s - 3r 3q - p a 2h r s - r s - 2r q a 3h s The argument half way between the arguments of q and r is a h a 2h . a 3 h- Hence the required entry is given by U 3 2 h X 1 A 3 2 Ua 3 3 3 1 1A 1 -A . A2 . I A3 2 222 22 I 2 3 ua Higher order differences being neglected . 2 1 3. Therefore u u Au A u-----------A u. tl uit ua 3 2 h a 2 a 8 a 16 a 3. 3 A x 1 p g q - p -g r - 2q p - s -3r 3q- p 2 8 16 CALCULUS OF FINITE DIFFERENCES 127 m 3 3 1 PI 1 2 8 16 3 3 3 2 4 16 I- s 16 19 9 1 --p -q -r-s 16 16 16 16 1 11A 1 p q r --s 16-------------- 16 2 2 16 1 x 1 - q r q r - p- s 2 16 1 Again A arithmetic mean of q and r 2 q r B Arithmetic mean of 3q - 2p - s and 3r - 2s - p is 1 3 3q - 2p - s 3r -2s - p q r - s - p . A B q r - s - p . 24 2 16 Substituting this value in 1 we get ua 3 2 h A 2 B. Example 30. Given u0 u1 u2 u3 u4 and u5. Assuming that fifth order differences to be constant. 1 c 2 Show that u 1 2 2 25 c - b 3 a - c -------7777------. where a u0 u5 b u1 u4 c u2 u3 256 U i 21 2 Sol. . E5 2u0 1 A 5 2u0 5 i 5 -1 5 . .21 2 . 2 A i------A2 2 2 5 I 5 Y 5 Y 5 Y 5 A 5I3 5 -1 I 5 - 2 I 5 - 3 I 5 - 4 212 X 2 X 2 X 2 a5 5 u0 5 A uo Auo -A uo ---A uo-----A uo .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
272    19    1    23-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.