A textbook of Computer Based Numerical and Statiscal Techniques part 17

A textbook of Computer Based Numerical and Statiscal Techniques part 17. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 146 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES _ 1 A2E-1 xux f-E -1 ux _ E E -1 2 E ux 1 2. . _ 2 x E2 - E 1 a ----E----- I ux 1 E E - 1 xE-xux _ 1 AE x u0 _ 1 xC1AE xC2A2E2 . u0 2 n _ uo xC1AEuo A E2uo . _ u0 xC1Au1 xC2A2 u2 . _ . f 1 ux- 1 2 A ux- 3 2 - I I A ux- 5 2 1 A6 Ux - 7 2 _ 1 E-1 2 2 1 1 A2p-3 2 1 2 3 2 f 1 A2 a4e-5 2 uv------A E uv -----------1 A E uY x 2 4 x 2 I 4 x 1 2 3 2 5 2 f 1 T A6E-7 2 . 3 I 4 J x 1E-1 2 _ 2 1X1Y a2e-1 1 -1 2 -3 2 i 1 I 2 JI4 2 4 2 -1 2 -3 2 -5 2 f 1 A2E_1 A3 A E 3 14 j ux _ 1 E 1 2 1 1 A2E-1 -1 2 ux 2 4 x 1E-1 2 2 4E A2 -1 2 4E ux 1 E 1 22E1 2 4 1 A A2 -1 2 ux _ 2 A 2 -1 2 ux 2 A -1 ux 1 E -1 ux _ 1 -E E2 -E3 E4 -E5 . ux _ ux - ux 1 ux 2 - ux 3 ux 4 - ux 5 _ . 3. . _ 1 x n u0 nC1 1 x n-1 x Au0 nC2 1 x n-2 x2 A2u0 1 x xA n u0 1 x 1 A n u0 1 xE n u0 1 nC1 xE nC2x2E2 nC3x3E3 . u0 u0 nC1u1 x nC2u2x2 nC3 u3x3 . . CALCULUS OF FINITE DIFFERENCES 147 1 3 . a m Example 10. Prove that Ax ta x 7 x A iz A x 2 1 1 2 Sol. . A 3 2 A 2 . 2 A2 . xn 1 -1A 2 A 1 A 1 2 xn AE 1 2xn Afx -1 x 1 -1T-i x -1T f x 1T-f x -1 T . 2 I 2 II 2 II 2 FACTORIAL NOTATIONS The product of n consecutive factors each at a constant difference and the first factor being x is called a factorial function or a factorial polynomial of degree n and is defined by x n x x - h x - 2h x - 3h . x - n - 1 n 0 If interval of differencing being unity then x n x x - 1 x - 2 x - 3 . x- n - 1 n 0 Because of their properties this function play an important role in the theory of finite differences and also it helps in finding the various order differences of a polynomial directly by simple rule of differentiation. Example 11. Obtain the function whose first difference is 9x2 11x 5. Sol. Let f x be the required function so that Af x 9x2 11x 5 Let 9x2 11x 5 9 x 2 A x B 9x x - 1 Ax B On substitution x 0 we get B 5 and for x 1 we get A 20. Therefore we have Af x 9 x 2 20 x 5 On integrating we have f x 9 y-

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
463    18    1    23-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.