A textbook of Computer Based Numerical and Statiscal Techniques part 25

A textbook of Computer Based Numerical and Statiscal Techniques part 25. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 226 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 1. Using Lagrange s formula find the value of i yx if yi 4 y3 120 y4 340 y5 2544 ii yoif y-30 30 y-12 34 y3 38 yis 42 Sol. i Here xo 1 x1 3 x2 4 x3 5 f x0 4 f xi 120 f x2 340 f xf 2544 Now using Lagrange s interpolation formula we have x - xi x - x2 x x3 x x xo x x2 x x3 f x f x xo - x1 xo - x1 xo - x3 x1 - xo x1 - x2 x1 - x3 x x0 x - x1 x - x3 x2 - x0 x2 - x1 x2 - x3 f x2 x - x0 x - xi x - x2 f x3 - x0 x3 - x1 x3 - x2 x -3 x -4 x -5 x - 1 x -4 x -5 f x - ----77----T7-----T x 4 ---77---V x 120 f x - 1 - 3 1 - 4 1 - 5 3-1 3- 4 3- 5 x -1 x - 3 x - 5 x - 1 x - 3 x - 4 7---TT----77------7 x 340 19--------------2 x 2544 4 -1 4 - 3 4 - 5 5 -1 5 - 3 5 - 4 1 yx -f x - -6 x - 3 x - 4 x - 5 30 x - 1 x - 4 x - 5 - 340 x - 1 x - 3 x - 5 318 x - 1 x - 3 x - 4 ii Here xo - 3o x1 - 12 x2 3 x3 18 yo 3o y1 34 y2 38 y3 42 Now from Lagrange s interpolation formula we have x - x1 x - x2 x - x3 x - x0 x - x2 x - x3 f x - 7------w----------77-------Ä f x0 7-------77------w---------Ä f x1 x0 - x1 x0 - x2 x0 - x3 x1 - x0 x1 - x2 x1 - x3 x - x0 x - x1 x - x3 x2 - x0 x2 - x1 x2 - x3 f x2 x - x0 x - x1 x - x2 x x3 - x0 x3 -x1 x3 - x2 - x 12 x - 3 x - 18 x 30 x 30 x - 3 x -18 x 34 yx -30 12 -30 - 3 -30 -18 -12 30 -12 -3 -12 -18 x 30 x 12 x -18 x 30 x 12 x - 3 3 30 3 12 3 -18 x 38 18 30 18 12 18- 3 x 42 yx - - x 12 x - 3 x - 18 x 30 x - 3 x - 18 - x 30 x 12 x - 18 x 30 x 12 x - 3 for x - 0 y0 - - 12 -3 -18 30 -3 -18 - 30 12 -18 30 12 -3 INTERPOLATION WITH UNEQUAL INTERVAL 227 y0 - - y0 - y0 . Ans. 1 Example 2. If y0 y1 y 2 y3. y9 are consecutive terms of a senes. Prove that y5 56 y4 y6 - 28 y3 y7 8 y2 y8 - y1 y9 Sol. Here the arguments are 1 2 3 . 9 so for these values Lagrange s formula is given by y __ x -1 x - 2 x -

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.