A textbook of Computer Based Numerical and Statiscal Techniques part 33

A textbook of Computer Based Numerical and Statiscal Techniques part 33. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 306 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Here x h u - 1at x n h dx h _ - _ u - 1 2 Then by Newton s backward formula we have u u 1 - 2 u u 1 u 2 3 u u 1 u 2 u 3 3 y x yn uVy v w 2y ------f------V iyn -----------------V iyn 2 6 24 Differentiating . x we have 1 L 2u 1 2 3u2 6u 2 3 4u3 18u2 22u 6 4 y x T Vyn V2yn ---V3yn ------------V4yn h 2 6 24 1 y ----- 0 1Ï 2 2 22--- . 1 . 2 1 Y C 1A2 C 1A 4I- 18I- 22I- 6 I 2 I 2 I 2 X 2 2 YY -22------------------- 50 Ans. Again differentiating equation 2 . x 1 L2 6u 6 _3 12u2 36u 22 4 hi V yn V yn --------24-------V yn . 1 y x T 1 y -------7 2 1 A2 C 1A z x 121- 361- 22 1 A I 2 I 2 1 - - 11 - X 2 2 24 X 2 ---- 2500 - - - y . Ans. Example 9. Find f 5 from the following table x 1 2 4 8 10 f x 0 1 5 21 27 Sol. Here the arguments are not equally spaced. So we use Newton s divide difference formula. NUMERICAL DIFFERENTIATION AND INTEGRATION 307 Difference table x f x Af x A2f x A3f x A4 f x 1 0 1 2 1 2 1 3 0 4 5 1 1 4 3 1 144 16 8 10 21 27 3 1 6 Newton s divided difference formula is given by f x f Xo X- Xo Af Xo x- Xo X- X1 A2f Xo x- Xg x- x1 x- x2 A3 f xo x - xo x - x1 x - x2 x - x3 A4 f xo . 1 Differentiating 1 . x we get f x Af Xo 2x Xo Xi A f Xo x Xi x x2 x Xo x x2 x Xo x Xi A f Xo . At x 5 1 f 5 1 io -1 - 2 5 - 2 5 - 4 5 -1 5 - 4 5 -1 5 - 2 x o 5 - 2 5 - 4 5 - 8 5 -1 5 - 4 5 - 8 5 -1 5 - 2 5 - 8 5 -1 5 - 2 5 - 4 f 1 7 f1L 1 -9 -12 - 36 12 1 7 -45 3 144 3 144 Hence f 5 . Ans. Example 10. Find f 5 from the data given below x 2 4 9 13 16 21 29 f x 57 1345 66340 402052 1118209 4287844 21242820 Sol. Here the arguments are not equally spaced and therefore we shall apply Newton s divided difference formula. f x f xo x - xo Af Xg x - x0 x - X1 A2f x0 x - x0 x - X1 X - x2 I I A3 f xg x - xg x - x1 x - x2 x - x3 A4 f xo . 1 308

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.