In the past several years, there have been many developments in the materials for lead–acid batteries. Silver in grid alloys for high temperature climates in SLI batteries has increased the silver content of the recycled lead stream. Concern about silver and other contaminants in lead for the active material for VRLA batteries led to the initiation of a study by ALABC at CSIRO. The study evaluated the effects of many different impurities on the hydrogen and oxygen evolution currents in float service for flooded and VRLA batteries at different temperatures and potentials. . | Available online at ELSEVIER Journal of Power Sources 144 2005 426-437 Improvements to active material for VRLA batteries R. David Prengaman RSR Technologies Inc. Dallas TX 75207 USA Available online 27 January 2005 Abstract In the past several years there have been many developments in the materials for lead-acid batteries. Silver in grid alloys for high temperature climates in SLI batteries has increased the silver content of the recycled lead stream. Concern about silver and other contaminants in lead for the active material for VRLA batteries led to the initiation of a study by ALABC at CSIRO. The study evaluated the effects of many different impurities on the hydrogen and oxygen evolution currents in float service for flooded and VRLA batteries at different temperatures and potentials. The study results increased the understanding about the effects of various impurities in lead for use in active material as well as possible performance and life improvements in VRLA batteries. Some elements thought to be detrimental have been found to be beneficial. Studies have now uncovered the effects of the beneficial elements as well as additives to both the positive and negative active material in increasing battery capacity extending life and improving recharge. Glass separator materials have also been re-examined in light of the impurities study. Old glass compositions may be revived to give improved battery performance via compositional changes to the glass chemistry. This paper reviews these new developments and outline suggestions for improved battery performance based on unique impurities and additives. 2004 Elsevier . All rights reserved. Keywords Lead-acid batteries Active material Impurities Additives Glass Separators 1. Introduction The lead-acid battery has always suffered from poor utilization of the active material. During discharge the positive and negative active materials react with the sulfuric acid of the electrolyte to form lead