Quy hoạch tuyến tính P2

GIẢI THUẬT ĐƠN HÌNH Chương này trình bày một cách chi tiết nội dung của giải thuật đơn hình. Sau phần cơ sở lý thuyết của giải thuật là các ví dụ tương ứng. Các ví dụ được trình bày đúng theo các bước của giải thuật. Kiến thức trong chương này cần thiết cho việc lập trình giải quy hoạch tuyến tính trên máy tính. Nội dung chi tiết của chương bao gồm : I- GIẢI THUẬT ĐƠN HÌNH CƠ BẢN 1- Cơ sở xây dựng giải thuật đơn hình cơ bản 2- Định lý về sự hội tụ. | GIẢI THUẦT ĐƠN HÌNH CHƯƠNG II GIẢI THUẬT ĐƠN HÌNH Chương này trình bày một cách chi tiết nội dung của giải thuật đơn hình. Sau phần cơ sở lý thuyết của giải thuật là các ví dụ tương ứng. Các ví dụ được trình bày đúng theo các bước của giải thuật. Kiến thức trong chương này cần thiết cho việc lập trình giải quy hoạch tuyến tính trên máy tính. Nội dung chi tiết của chương bao gồm I- GIẢI THUẬT ĐƠN HÌNH CƠ BẢN 1- Cơ sở xây dựng giải thuật đơn hình cơ bản 2- Định lý về sự hội tụ 3- Giải thuật đơn hình cơ bản 4- Chú ý trong trường hợp suy biến II- GIẢI THUẬT ĐƠN HÌNH CẢI TIẾN 1- Một cách tính ma trận nghịch đảo 2- Quy hoạch tuyến tính dạng chuẩn 3- Giải thuật đơn hình cải tiến 4- Phép tính trên dòng - Bảng đơn hình III- PHƯƠNG PHÁP BIẾN GIẢ CẢI BIÊN 1- Bài toán cải biên a- Cải biên bài toán quy hoạch tuyến tính b- Quan hệ giữa bài toán xuất phát và bài toán cải biên 2- Phương pháp hai pha 3- Phương pháp M vô cùng lớn IV- QUY HOẠCH TUYẾN TÍNH SUY BIẾN 1- Các ví dụ về quy hoạch tuyến tính suy biến 2- Xử lý quy hoạch tuyến tính suy biến 34 GIẢI THUẦT ĐƠN HÌNH CHƯƠNG II GIẢI THUẬT ĐƠN HÌNH I- GIẢI THUẬT ĐƠN HÌNH CƠ BẢN Chương này trình bày một phương pháp để giải bài toán quy hoạch tuyến tính đó là phương pháp đơn hình. Phương pháp đơn hình được George Bernard Dantzig đưa ra năm 1947 cùng lúc với việc ông khai sinh ra quy hoạch tuyến tính. Đây là một phương pháp thực sự có hiệu quả để giải những bài toán quy hoạch tuyến tính cở lớn trong thực tế. Với cách nhìn hiện đại ý tưởng của phương pháp đơn hình rất đơn giản. Có nhiều cách tiếp cận phương pháp đơn hình chương này trình bày một trong các cách đó. 1- Cơ sở xây dựng giải thuật đơn hình cơ bản Xét bài toán quy hoạch tuyến tính chính tắc max z x cTx Ax b x 0 Giả sử rằng B0 là một cơ sở khả thi xuất phát của bài toán không nhất thiết là m cột đầu tiên của ma trận A . Thuật toán đơn hình cơ bản được xây dựng dựa trên các bước sau a- Gán B B0 và l 0 số lần lặp b- l l 1 c- Với cơ sở hiện thời B tính xB xN B-1b 0 phương án cơ .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.