Các biến phụ thuộc bị giới hạn

Trong những trường hợp như vậy thì biến phụ thuộc của chúng ta có hai tính chất (nó là một biến giả, biến nhị thức, biến định tính . . .). Các biến giả được bổ sung dễ dàng vào mô hình hồi qui bội dưới dạng biến giải thích, nhưng trong việc sử dụng chúng dưới dạng biến phụ thuộc lại đòi hỏi các kỹ thuật đặc biệt. Mô hình áp dụng cho trường hợp này là mô hình xác xuất. | Chương Trình Giảng Dạy Kinh Tế Fulbright Các phương pháp phân tích Các biến phụ thuộc bị giới hạn Niên Khóa 2007 - 2008 Các biến phụ thuộc bị giới hạn Chúng ta có thể tiếp xúc với các dữ liệu liên quan đến các trường hợp như: tại sao có những người nằm trong lực lượng lao động và một số người khác thì không, tại sao có những người nằm dưới mức nghèo đói và có những người lại nằm trên mức đó, tại sao có những người sở hữu một căn nhà và những người khác thì không, tại sao một loại thuốc mới khi lâm sàng thể nghiệm thì có tác dụng với một số người nhưng lại không có tác dụng với người khác, tại sao có sinh viên theo học đại học điểm của họ lại được cải thiện còn các sinh viên khác thì không. Như vậy có rất nhiều trường hợp mà chúng ta sẽ nghiên cứu giống như những trường hợp đã nêu ở trên. Để giải thích tại sao lại xảy ra những trường hợp như vậy, hay nói khác đi là chúng ta muốn tìm ra những nhân tố ảnh hưởng đến các trường hợp "có" hoặc "không" thì cần thiết phải áp dụng công cụ kinh tế lượng quen thuộc. Trong những trường hợp như vậy thì biến phụ thuộc của chúng ta có hai tính chất (nó là một biến giả, biến nhị thức, biến định tính . . .). Các biến giả được bổ sung dễ dàng vào mô hình hồi qui bội dưới dạng biến giải thích, nhưng trong việc sử dụng chúng dưới dạng biến phụ thuộc lại đòi hỏi các kỹ thuật đặc biệt. Mô hình áp dụng cho trường hợp này là mô hình xác xuất. Có ba mô hình xác xuất khác nhau: 1) LPM (Linear probability model) dùng phương pháp ước lượng OLS 2) Logit dùng phương pháp ước lượng CDF (cummulative distribution function) 3) Probit dùng phương pháp ước lượng CDF (cummulative distribution function) LPM Mô hình xác suất tuyến tính. Bằng mô hình xác suất tuyến tính chúng ta có thể hiểu được điểm mấu chốt của phép hồi qui mà biến phụ thuộc có hai tính chất. Hàm hồi qui tổng thể có dạng: Yi = β1 + β2X2i + β3X3i + L + βKXKi + ε i E Y | X's = β + βX + βX + + β X + Eε []i 1 2 2i 3 3i L K Ki [ i ] E[]Yi = β1 + β2X2i + β3X3i + L + βXKi Nếu chúng ta viết .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
120    19    2    07-12-2021
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.