Bài tập ôn thi Toán: Nguyên hàm tích phân

Đây là bài tập nguyên hàm tích phân gửi đến các bạn học sinh tham khảo để củng cố kiến thức toán 12. | CHƯƠNG 4. NGUyÊN HÀM VÀ TÍCH PHÂN 1. Dùng bảng tích phân cơ bản và các tính chất của tích phân tính 1 J ax bx 2dx _ f 1 x 2 . 2 1 2 dx x 1 x2 3 J 4 J xcos2 1 Inx sinxdx J V1 2cosx 7 r x arccos3x 2 dx 7 J 1 -9x2 x r dx 9 Ji L J 1 sinx 1 x x 11 1 dx J Vỡ x2 3 1 tg2x 8 J e 4 dx 10 J . c 1 x 2dx 12 J 7 J x-4x Giải. 1 J ax bx 2dx J a2 x 2 ab x b2 x dx a2x 2 ab x b2x lna2 ln ab lnb2 C f 1 x 2 - 1 2 V I I 2 J Vi - V dx J ỉ ĩ x7J ln Ix I 2arctgx C 3 x3 2 . x3 2 6 C J 3 3 6 -5V x3 2 6 C. 18 f dx f d 1 Inx 4 J xcos2 1 Inx J cos2 1 lnx tg 1 lnx C. sinxdx 71 2cosx f- -717 7 c. J 2 71 2cosx f 1 tg2x fd l tgx 71 tgx l tgx 2-Ự1 lịỉx c . r X arccos3x 2 71-9x2 1 . i 1 . - - 1-9x2 2ú l-9x2 -- j arccos3x 2ú arccos3x -- 71-9x2 - arccos3x 2 c. f exdx r d ex 1 ex 8 J 7x7 J e7 22 Ỉarctg 2 c 1 sinx dx Mt 5 2cos2 - u 2 1 cos Chú ý ta cũng có thể tính r dx J TTi x2 dx x2 1 11 J x2 V l V d J x2 In 1 1 r 1 ì 2 C In x x 7 Xx 7 1 yl 1 x2 C 71 - x2 3 d J V lx- dx 2 x r 1A d1 x 1 x J 1 r 1ì2 1 x dx 1 f d 1 -x2 r xr 2 Jự 1 - x2 3 arcsinx I C . V1 - x2 12 J 1 - x 2dx x2 -1 1A - 2x 2 x2 dx 2x2 - 12x - 6 wx J C X 7 2. Dùng phương pháp đổi biến tính các tích phân sau 1 J x3 1 - 2x4 3dx dx 2 J x 1 x xdx 3 sin4xdx 4 J cos22x 4 5 J dx x 6 J 7 J x3Va - x2 .dx 8 J x2 -x dx 8 J x - 2 3 x - 1 dx dx 10 77 9 N x 1 11 J dx 11 J x 1 xex dx 12 J -7 J V1 ex _ rx2 -1 13 J x4 1dx 1 x2 - J x2 5x 1 x 1 ---77 dx 2 - 3x 1

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.