Tham khảo tài liệu 'junior problems - phần 1', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Junior problems J163. Let a b c be nonzero real numbers such that ab bc ca 0. Prove that ab bc ca 1 a2 b2 I b2 c2 I c2 a2 2 Proposed by Titu Andreescu University of Texas at Dallas USA Solution by Ercole Suppa Teramo Italy We have Eab X X f ab 1 3 X X a b 2 3 cyc a2 b2 V a2 b2 2 2 C-c 2 a2 b2 _ 2 X a b 2 3 2 a2 b2 c2 2 ab bc ca 3 c 2 a2 b2 c2 _ 2 2 a2 b2 c2 2 ab bc ca 3 ab bc ca 1 1 1 a2 b2 c2 _ 2 a2 b2 c2 _ 2 - 2 where in the last step we have used the fact that ab bc ca 0. Also solved by Arkady Alt San Jose California USA Daniel Lasaosa Universidad Pública de Navarra Spain Perfetti Paolo Dipartimento di Matematica Università degli studi di Tor Vergata Roma Italy Prithwijit De HBCSE India Andrea Ligori Università di Roma Tor Vergata Italy Piriyathumwong P. Bangkok Thailand. Mathematical Reflections 4 2010 1 J164. If x and y are positive real numbers such that x px2 1j yy py2 1 j 2011 find the minimum possible value of x y. Proposed by Neculai Stanciu George Emil Palade Buzau Romania First solution by Michel Bataille France The required minimum value is J2oi i Write x sinh a and y sinh b where a ln x px2 1 0 and b ln y y y2 1 0. From the hypothesis we have a b ln 2011 and using a known formula x y sinh a sinh b 2 sinh cosh 2 sinh a 2 sinh ln p2011 a b 2 a b 2 where the inequality follows from cosh t 1 for all t and sinh u 0 for u 0. Since 2sinh ln p2011 p2011------p 2 J we obtain y 2011 y 2011 2010 x y . p2011 Clearly equality holds when a b since cosh 0 1 that is when x y. The result follows. Second solution by the authors Let z x px2 1. We have z 0 and 1 x pp. From hypothesis y y y2 1 20p TTTZ ri A-f o I _ 2011 z LVaivì 1 A rtnr o we get 2 y 2-2011-2. From 1 and 2 p - 1 Ệ 20112 - z2 _ 2010 x y 2z 2 2011 z 2 2011 2011 2010 2011 z z 2ÕĨĨV z z The equality occurs for z 2011 or equivalently z2 2011. Then from 1 and we obtain C 1 mintT -I- _J2010 So min x y 2011. 2 2010 1005 x y - . 2p2011 y 2011 Also solved by Arkady Alt San Jose California USA Francisco Javier .