Giả sử có lưới tam giác giải tích như trên hình , lưới n y tựa trên các điểm cấp cao l 0 v Q, phát triển tăng d y để xây dựng các điểm Pj (j = 1 - PN-1) của lưới giải tích, chúng ta tiến h nh đo các góc trong lưới. Gọi góc tại điểm 0 l C (góc trung gian) góc đối diện với cạnh đ biết chiều d i l B, góc đối diện với cạnh đang cần tính chiều d i l A (A; B l góc liên hệ) Hình Như thế. | mfp 30 S Ĩ2 1 44 3. Hàm có dạng z x1 x2 x3 . xn c Hàm này có hệ số k1 k2 . kn 1 c là hằng số. Quan hệ giữa sai số thực của hàm và sai số thực của biến số được biểu thị theo công thức Az Ax1 Ax2 x3 . Axn Nếu trong hàm chúng ta chỉ giới hạn đến hai biến số x1 x2 nghĩa là z x1 x2 c Trường hợp này thì quan hệ giữa sai số thực và của hàm và sai số thực của biến số sẽ là Az Ax1 Ax2 Bình phương hai vế của có A2z A2x1 A2x2 2Ax1Ax2 Mỗi đại lượng x1 x2 đều được đo n lẩn chúng ta viết được n đẳng thức dạng lấy tổng từng vế của các đẳng thức và chia cho n sẽ được A z A X1 A x2 2 AxĩAx2 op I n n n n Theo tính chất thứ tư của sai số ngẫu nhiên thành phẩn thứ ba của sẽ tiến tới 0. Sai số trung phương của hàm sẽ là mz 7 mXĩ mX2 Kết luận của công thức có thể mở rộng cho hàm nhiều biến . m 7 m2ì m22 m2 z x x xn Khi đo cùng độ chính xác thì mx1 mx2 . mxn sẽ có mz mVn 4. Hàm có dạng z f x1 x2 x3 . xj Ớ đây các đại lượng x1 x2 . xn là các đại lượng đo độc lập. Khi các đại lượng đo mắc phải sai số Ax1 Ax2 . Axn thì hàm mắc phải sai số Az nghĩa là z Az f x1 Ax1 x2 Ax2 . xn Axn Với giả thiết là trong không có chứa sai số thô khi đó các sai số Ax1 Ax2 . Axn đủ nhỏ nên có thể khai triển Taylor vế bên phải của và chỉ giữ lại số hạng bậc nhất sẽ được z Az f x1 x2 x3 . xn 3f . df df - Ax1 - Ax2 - Axn 3x1 1 dx2 2 dxn n Từ và rút ra . df df df Az - Ax1 - Ax2 - Axn dx1 1 dx2 2 dxn n 121 df df df Các đạo ham riêng - . la các hăng so. dxi dx2 dxn Chuyển quan hệ sai số thực của về quan hệ sai số trung phuơng sẽ đuợc mz 1 I z K dxi 2 z 2 z 2 df ì 2 df ì df ì mX1 1dx2 mX2 1dxn mX Ví dụ tính sai số trung phuơng của hiệu số độ cao đuợc xác định theo phuơng pháp đo cao luợng giac h DsinZV i -1 2 Nếu D có sai số trung phuơng mD góc nghiêng V có sai số trung phuơng mV i có sai số trung phuơng mi l có sai số trung phuơng ml. Tính các đạo ham riêng 1 ịsin2V 1 Dcos2V 3D 2 dV dh _ 1