Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 14

Tham khảo tài liệu 'đề thi thử đại học năm 2011 của trần sỹ tùng ( có đáp án) - đề số 14', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Ôn thi Đại học Trần Sĩ Tùng Đề số 14 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH 7 0 điểm Câu I. 2 điểm Cho hàm số y 2x 1 C X 1 1 Khảo sát sự biến thiên và vẽ đồ thị C của hàm số. 2 Tìm các điểm M thuộc đồ thị C sao cho tổng các khoảng cách từ M đến hai tiệm cận của C là nhỏ nhất. Câu II. 2 điểm 1 Tìm m để hệ phương trình có nghiệm 2 Giải phương trình V X ự y 1 xJX yjy 1 - cos2x 0. n 2 I J X sin2 x cos xdx . 0 Câu III. 1 điểm Tính tích phân Câu IV. 1 điểm Trên cạnh AD của hình vuông ABCD có độ dài là a lấy điểm M sao cho AM x 0 m a . Trên nửa đường thẳng Ax vuông góc với mặt phang ABCD tại điểm A lấy điểm S sao cho SA y y 0 . Tính thể tích khối chóp theo a y và x. Tìm giá trị lớn nhất của thể tích khối chóp biết rằng x2 y2 a2. Câu V. 1 điểm Cho x y z là các số dương thoả mãn 1. Chứng minh rằng x y 1 11 z 1 1 ---------I---------I-------- 1. 2 z y z x 2y z x y 2 z II. PHẦN RIÊNG 3 điểm A. Theo chương trình chuẩn Câu . 2 điểm 1 Trong mặt phẳng với hệ toạ độ Oxy cho điểm C 2 0 và elip E x p 1. Tìm toạ độ các điểm A B thuộc E biết rằng hai điểm A B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều. 2 Trong không gian với hệ toạ độ Oxyz cho mặt cầu S x2 y2 z2 -2x 2y 4z - 3 0 và x y -1 z . x -1 y z hai đường thẳng 4 42- . Viết phương trình tiếp diện của mặt cầu 2 -1 1 -1 1 -1 S biết tiếp diện đó song song với hai đường thẳng A1 và A1. 90 - 80 Câu . 1 điểm Giải hệ phương trình B. Theo chương trình nâng cao Câu . 2 điểm 1 Trong mặt phẳng với hệ toạ độ Oxy cho parabol P y2 8x. Giả sử đường thẳng d đi qua tiêu điểm của P và cắt P tại hai điểm phân biệt A B có hoành độ tương ứng là xb x2. Chứng minh AB x1 x2 4. 2 Trong không gian với hệ tọa độ Oxyz cho hai điểm A 1 5 0 B 3 3 6 và đường thẳng A có phương trình tham số x -1 2t y 1 -1 z 2t. Một điểm M thay đổi trên đường thẳng A xác định vị trí của điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. Câu . Tính đạo hàm f x của hàm số f x ln -- .

Bấm vào đây để xem trước nội dung
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
463    20    1    26-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.