GIÁO TRÌNH LÝ THUYẾT ĐỒ THỊ - CHƯƠNG 4

ĐỒ THỊ EULER VÀ ĐỒ THỊ HAMILTON Trong chương này chúng ra sẽ nghiên cứu hai dạng đồ thị đặc biệt là đồ thị Euler và đồ thị Hamilton. Dưới đây, nếu không có giải thích bổ sung, thuật ngữ đồ thị được dùng để chỉ chung đa đồ thị vô hướng và có hướng, và thuật ngữ cạnh sẽ dùng để chỉ chung cạnh của đồ thị vô hướng cũng như cung của đồ thị có hướng. Đường đi đơn trong G đi qua mỗi cạnh của nó một lần . | CHƯƠNG 4 ĐỒ THỊ EULER VÀ ĐỒ THỊ HAMILTON Trong chương này chúng ra sẽ nghiên cứu hai dạng đồ thị đặc biệt là đồ thị Euler và đồ thị Hamilton. Dưới đây nếu không có giải thích bổ sung thuật ngữ đồ thị được dùng để chỉ chung đa đồ thị vô hướng và có hướng và thuật ngữ cạnh sẽ dùng để chỉ chung cạnh của đồ thị vô hướng cũng như cung của đồ thị có hướng. 1. ĐỒ THỊ EULER Ư Định nghĩa 1. Chu trình đơn trong đồ thị G đi qua mỗi cạnh của nó một lần được gọi là chu trình Euler. Đường đi đơn trong G đi qua mỗi cạnh của nó một lần được gọi là đường đi Euler. Đồ thị được gọi là đồ thị Euler nếu nó có chu trình Euler và gọi là đồ thị nửa Euler nếu nó có đường đi Euler. Rõ ràng mọi đồ thị Euler luôn là nửa Euler nhưng điều ngược lại không luôn đúng. JThí dụ 1. Đồ thị G1 trong hình 1 là đồ thị Euler vì nó có chu trình Euler a e c d e b a. Đồ thị G3 không có chu trình Euler nhưng nó có đường đi Euler a c d e b d a b vì thế G3 là đồ thị cửa Euler. Đồ thị G2 không có chu trình cũng như đường đi Euler. Hình 1. Đồ thị G1 G2 G3 JThí dụ 2. Đồ thị H2 trong hình 2 là đồ thị Euler vì nó có chu trình Euler a b c d e a. Đồ thị H3 không có chu trình Euler nhưng nó có đường đi Euler c a b c d b vì thế H3 là đồ thị nửa Euler. Đồ thị H1 không có chu trình cũng như đường đi Euler. Hình 2. Đồ thị H1 H2 H Điều kiện cần và đủ để một đồ thị là một đồ thị Euler được Euler tìm ra vào năm 1736 khi ông giải quyết bài toán hóc búa nổi tiếng thế giới thời đó về bảy cái cầu ở thành phố Konigsberg và đây là định lý đầu tiên của lý thuyết đồ thị. J ịnh lý 1 Euler . Đồ thị vô hướng liên thông G là đồ thị Euler khi và chỉ khi mọi đỉnh của G đều có bậc chẵn. Để chứng minh định lý trước hết ta chứng minh bổ để Bổ đề. Nếu bậc của mỗi đỉnh của đồ thị G không nhỏ hơn 2 thì G chứa chu trình. Chứng minh. Nếu G có cạnh lặp thì khẳng định của bồ đề là hiển nhiên. Vì vậy giả sử G là đơn đồ thị. Gọi v là một đỉnh nào đó của G. Ta sẽ xây dựng theo qui nạp đường đi v à V1 à V2 à . . . trong đó v1 là đỉnh kề với v còn với i

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.