HANDBOOK OFINTEGRAL EQUATIONS phần 9

Tham khảo tài liệu 'handbook ofintegral equations phần 9', ngoại ngữ, ngữ pháp tiếng anh phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | where ao 1 . an are the coefficients of the polynomial Un z and the a-k are the coefficients of the expansion of the function Ỷ z which are given by the obvious formula a-k -h T -3j p H rr dr 2ni J L 1 X r The solvability conditions acquire the form an an-1 an-p v 2 0. If a solution must satisfy the additional condition to 0 then for V-p 0 in formulas 53 we must take the polynomial Pv-p-1 z and for V -p 0 p - V conditions must be satisfied. . The Riemann Problem for a Multiply Connected Domain Let L L0 L1 Lm be a collection of m 1 disjoint contours and let the interior of the contour L0 contain the other contours. By Q we denote the m 1 -connected domain interior for L0 and exterior for L1 . Lm. By Q- we denote the complement of Q L in the entire complex plane. To be definite we assume that the origin lies in Q . The positive direction of the contour L is that for which the domain Q remains to the left . the contour L0 must be traversed counterclockwise and the contours L1 . Lm clockwise. We first note that the jump problem ln - t H t is solved by the same formula z H t dr T - z as in the case of a simply connected domain. This follows from the Sokhotski-Plemelj formulas which have the same form for a multiply connected domain as for a simply connected domain. The Riemann problem homogeneous and nonhomogeneous can be posed in the same way as for a simply connected domain. We write Vk 2n arg D t Lk all contours are passed in the positive direction . By the index of the problem we mean the number m V Vk. 54 k 0 If Vk k 1 . m are zero for the inner contours then the solution of the problem has just the same form as for a simply connected domain. To reduce the general case to the simplest one we introduce the function m J - zk Vk k 1 where the zk are some points inside the contours Lk k 1 . m . Taking into account the fact that arg t - zk Lj 0 for k j and arg t - Zj Lj -2n we obtain m 1m argTT t - Zk v 2n 44 k 1 - Lj 2n arg - zj j L Vj j 1 . m. 1998 by .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.