Tham khảo tài liệu 'giáo trình phân tích cấu tạo lý thuyết trường và phương thức sử dụng toán tử divergence p6', tài chính - ngân hàng, kế toán - kiểm toán phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | ương 7. Phương Trình Truyền Sóng d2v d2v a2 at2 dx2 v x 0 g x - p 0 - I q 0 - p 0 g1 x Iv x 0 h x - p 0 - x q 0 - p 0 h1 x at 1 v 0 t v 1 t 0 với các điều kiện biên g1 0 g1 1 0 g 0 p 0 g 1 q 0 h1 0 h1 1 0 h 0 p 0 h 1 q 0 Hàm w x t là nghiệm của bài toán HH1b rr a2 f x t - p t - x q t - p t a2 - fi x t dt2 dx2 1 dx2 z dw z w x 0 0 - x 0 0 dt w 0 t w 1 t 0 Giải các bài toán và tìm các hàm v x t và w x t sau đó thế vào công thức suy ra nghiệm của bài toán HH1. Đỉnh lý Cho các hàm f e C H 3 n C1 D 3 g e C2 D 3 h e C1 D 3 và các hàm p q e C2 0 T 3 thoả mãn g 0 p 0 g 1 q 0 và h 0 p 0 h 1 q 0 Hàm u x t xác định theo công thức với các hàm v x t và w x t 1à nghiệm của các bài toán và 1à nghiệm duy nhất và ổn định của bài toán HH1. Ví du Giải bài toán 2u 4 2u xt với x t e 0 1 X 0 T ----- at2 dx2 u x 0 sinnx u x 0 x và u 0 t 0 u 1 t t dt Tìm nghiệm của bài toán dưới dạng u x t v x t w x t xt trong đó hàm v x t 1à nghiệm của bài toán HH1a với g1 x sinnx và h1 x 0 còn hàm w x t 1à nghiệm của bài toán HH1b với f1 x t xt. Giải bài toán HH1 a. 2 sin nxsinknxdx J 1 k 1 và b. 0 với k e z k I 0 k 1 k 0 Suy ra v x t cos2ntsinnx Chương 7. Phương Trình Truyền Són Giải bài toán HH2a . 1 . 2 -1 k 1 . x fk t 2t x sin knxdx --2 t với k e z 0 kn Giải họ phương trình vi phân hệ số hằng 2 -1 k 1 Tjk t 2kn 2Tk t - t Tk 0 0 Tk 0 0 kn k Tìm được các hàm -I k 1 c 1 A . . Tk t t - 2 k sin 2knt j với k e z Suy ra nghiệm của bài toán z .X . 1 -1 k 1 u x t xt cos2ntsinnx - V --- I t - 2n3 Ếí k3 L sin2knt I sinknx 2kn Nhân xét Bằng cách kéo dài liên tục các hàm liên tục từng khúc các công thức trên vẫn sử dụng được trong trường hợp các hàm g và h có đạo hàm liên tục từng khúc. Bài tâp chương 7 Đưa về chính tắc các phương trình đạo hàm riêng tuyến tính cấp 2 sau đây. ì d2u . d2U d2u 1. 2 5 -7- - 16u 0 dx2 dxdy dy2 _ d 2u d 2u d 2u du du 2. - - 9 --9 - 9u 0 dx2 dxdy dy2 dx dy 3. 2 T 3 N 7 u- 4 u 0 dx2 dxdy dy2 dx dy 4 d2u d2u d2u . du M 4. - 2sinx - cos x .