Báo cáo nghiên cứu khoa học: "Về cấu trúc và biểu hiện xạ ảnh của nhóm Lie Poin caré"

Tuyển tập các báo cáo nghiên cứu khoa học trường đại học Huế đề tài: Về cấu trúc và biểu hiện xạ ảnh của nhóm Lie Poin caré. | TẠP CHÍ KHOA HỌC ĐẠI HỌC HUẾ Số 48 2008 VỀ CẤU TRÚC VÀ BIỂU DIỄN XẠ ẢNH CỦA NHÓM LIE POINCARÉ Trần Đạo Dõng Đại học Huế Lưu Thị Khánh Giang Sở GD-ĐT Quảng Bình Nguyễn Tân Quang học viên cao học trường ĐHSP Đại học Huế TÓM TẮT Một trong các bài toán cơ bản của lý thuyết biểu diễn nhóm Lie là mô tả và phân lớp các biểu diễn unita bất khả qui của các nhóm Lie nửa đơn đặc biệt là các biểu diễn xạ ảnh bất khả qui cảm sinh từ biểu diễn unita bất khả qui của phủ phổ dụng đơn liên tương ứng. Trong bài viết này trước hết chúng tôi khảo sát cấu trúc của nhóm Poincaré xét như tích nửa trực tiếp của các nhóm Lie. Tiếp đó chúng tôi khảo sát biểu diễn xạ ảnh của nhóm Lie Poincaré liên thông SO 3 1 X R4 cảm sinh từ các biểu diễn unita bất khả quy của tích nửa trực tiếp SL 2 C X R4 phủ phổ dụng đơn liên 2-lá của SO 3 1 X R4. 1. Nhóm poincaré và phủ đơn liên tương ứng . Định nghĩa Cho nhóm Lorentz H O 3 1 tác động một cách tự nhiên lên R4 qua ánh xạ T O 3 1 X R4 R4 g x T g x gx. Khi đó ánh xạ a g T g . là một đồng cấu nhóm từ nhóm Lorentz H O 3 1 vào nhóm các tự đẳng cấu trơn của R4. Ta định nghĩa nhóm Poincaré là tích nửa trực tiếp O 3 1 XT R4 của các nhóm Lie O 3 1 và R4. Để đơn giản nhóm Poincaré thường được ký hiệu là G O 3 1 X R4. Phép toán nhân và nghịch đảo trên nhóm Poincaré cho bởi g x g x9 gg T g 1 x x ỉ gg g -1x x i g x -1 g-1 T g -x g-1 -gx v g x g x9 G G. . Mệnh đề Đại số Lie của nhóm Lie Poincaré G O 3 1 X R4 là tích nửa trực tiếp của các đại số Lie so 3 1 n R4 với n so 3 1 DerR4 là đồng cấu đại số Lie xác định bởi n X x Xx VX G so 3 1 Vx G R4. Chứng minh. Gọi T g là vi phân của T g . tại phần tử đơn vị của R4. Do T g . R4 R4 là một tự đẳng cấu nhóm Lie nên T g R4 R4 là tự đẳng cấu đại số Lie của R4. Khi đó ánh xạ T G AutR R4 g T g là một đồng cấu nhóm 15 và trơn nên T là một đồng cấu nhóm Lie. Đại số Lie của các nhóm Lie O 3 1 và Aut R4 lần lượt là so 3 1 và Der R4 nên dT là một đồng cấu đại số Lie từ so 3 1 vào Der R4 . Theo định nghĩa đại số Lie của nhóm .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.