Tham khảo tài liệu 'toán ứng dụng 4', tài chính - ngân hàng, kế toán - kiểm toán phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Trường Đại học Bách khoa tp. Hồ Chí Minh Bộ môn Toán Ứng dụng 1. Dạng giải tích của định lý Hahn-Banach. __ Ta có ll g supi gịl s iplgix v 1 x G ll x ll xẽ G ll x Ảv ll Vì d v M ổ 0 nen 3z e M 0 r 1 llv - z ll r-1ổ r ll v - z ll ổ Khi đó l g v - z l ổ r llv - z ll Víỵ llglklg v-zll -r v - z ll Vì r tùy ý r 1 nên ll g ll 1 ll g lh 1 21 1. Dạng giải tích của định lý Hahn-Banach. Theo hệ quả 1 tồn tại phiếm hàm tuyến tính liên tục F trên E F b g Vx e M F x g x 0 và F g 1 . 22 1. Dạng giải tích của định lý Hahn-Banach. Hệ quả 3 Giả sử M là không gian con của không gian định chuẩn E và V G E M d v M inf V - x ô 0 x M Khi đó tồn tại một phiếm hàm tuyến tính liên tục F trên E sao cho 1. Vx e M F x 0 2. F v 1 3. F d v M .