Báo cáo toán học: "A variation of Lomonosov's theorem "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Một biến thể của định lý Lomonosov. | Copyright by INCREST 1979 J. OPERATOR THEORY 2 1979 131-140 A VARIATION OF LOMONOSOV S THEOREM H. w. KIM R. MOORE and c. M. PEARCY Let 3C be an infinite-dimensional complex Banach space and let denote the algebra of all bounded linear operators on 3C. One version of the pioneering theorem of Lomonosov 7 says that if T is a nonscalar operator in -SfX and T commutes with some nonzero compact operator then T has a nontrivial hyperinvariant subspace. Recall that a closed subspace of X is a nontrivial hyperinvariant subspace for an operator T in if 0 0 ểlẽ ĨE and T 911 c 11 for every operator T in JT ST that commutes with T. For expository accounts of ramifications of the Lomonosov technique the reader might consult 8 Chapter 7 or 9 . Additional results in this direction were obtained in 3 5 and 6 and in 1976 the first and third authors together with A. L. Shields proved the following theorem which was stated without proof as Theorem of 8 Theorem a. If T is a nonscalar operator in and there exists a nonzero compact operator K such that either a KT .TK for some scalar Ẳ b KT Tp K for some polynomial p satisfying 7 0 0 0 or c T is quasinilpotent and KT TnK for some positive integer n then T has a nontrivial hyperinvariant subspace. Somewhat later the authors improved upon Theorem A and also discovered that parts of Theorem A had been proved independently by others. In 1 Scott Brown showed among other things that a nonscalar operator T in has a nontrivial hyperinvariant subspace under hypothesis a and in 4 it was shown that such a T has a nontrivial hyperinvariant subspace under a weaker hypothesis than c . It is the main purpose of this note to prove that such an operator Thas a nontrivial hyperinvariant subspace under a hypothesis weaker than b thereby making available a complete proof of a stronger theorem than Theorem A. In what follows the spectrum of an operator T in will be denoted by ff T and the point spectrum of T . the set of eigenvalues of T by afT . .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.