Báo cáo toán học: "A result on operators on $\cal C$ [0,1] "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Một kết quả trên các nhà khai thác trên $ \ cal C $ [0,1]. | J. OPERATOR THEORY 3 1980 275-289 Copyright by INCREST 1980 A RESULT ON OPERATORS ON ê 0 1 J. BOURGAIN INTRODUCTION Throughout the text subspace means always infinite dimensional subspace . For generalities about Banach spaces we refer to 9 . m stands for 0 1 . Let r denote the Rademacker functions on 0 1 . We recall that a Banach space X has cotype q 2 q oo iff there exists a constant p 0 such that for all finite sequences x15 . x of elements of It is known that X has cotype q for some q oo if and only if X does not contain n 1 2 . uniformly or in other words c0 is not finite dimensionally representable in X see 10 for instance . The following result is due to H. p. Rosenthal 4 or 14 . Theorem 1. Let 9 be a Banach space and T .m an operator such that T ls not separable Then there exists a subspace X isometric to cể such that T x is an isomorphism. If X is a subspace of and XÍ a subset of T we say that xe is norming for X provided sup I X àp X x for all xe X . nèx J j identifying with the Radon measures p on 0 1 . We will prove Theorem 2. If X is a cotype subspace ofcể andxf a w -compact subset of ể which norms X then Xf is not separable. Taking Xf T y y IIjAI 4 with M big enough we obtain as immediate consequence of Theorem 1 and Theorem 2 276 J. BOURGA1N Corollary 3. If is a Banach space and T J6 y an operator fixing a cotype subspace of then Tfixes a copy of d. Applying 14 Corollary 1 we get also Corollary 4. Any complemented subspace of Ý which has a cotype subspace is isomorphic to 6. One may conjecture that Theorem 2 also holds under the weaker hypothesis that c0 does not imbed in x. The rest of the paper is devoted to the proof of Theorem 2. Since Ỹ and if d the continuous functions on the Cantor set are isomorphic see 11 we may replace 6 by tf d . REDUCTION TO THE CASE OF POSITIVE MEASURES Denote by JI d the space of Radon measures on A 0 1 N. If p e . d then Jpi is the variation of p. It is clear that for a norm-separable w -compact subset Jf of

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
24    17    1    24-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.