Báo cáo toán học: "The invariant subspaces of a Volterra operator "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Các subspaces bất biến của một nhà điều hành Volterra. | J. OPERATOR THEORY 6 1981 351-361 Copyright by INCREST 1981 THE PRODUCT OF SPECTRAL MEASURES w. RICKER. 1. INTRODUCTION The example of s. Kakutani 3 shows that the construction of the tensor product of two commuting spectral measures is not always possible. Accordingly if s and T are commuting scalar operators on a space X see 2 then s T and ST may not be of scalar type. It was pointed out by c. Foias for a discussion see 1 that the tensor product of two commuting spectral measures always exists if they are interpreted as spectral distributions. Then the product is of course only a spectral distribution and not necessarily a spectral measure. Accordingly the sum and the product of two commuting scalar operators are generalized scalar operators. As such they admit a functional calculus for smooth functions only. An alternative solution is possible if the operators s and T have extensions acting on a suitable larger space containing X. The technique of going to a larger space is often used in mathematical physics. For example the unbounded operator of differentiation in L2 R does not admit any eigenfunctions. However L2 R can be considered as part of a larger space which accommodates the complete set of eigenfunctions X - exp iẤx of the differentiation operator. Or let D be a self-adjoint second order non-singular differential operator with c coefficients on a b and let Du ý be an associated Sturm-Liouville problem with appropriate boundary conditions. Let u m ựộ be its solution for ự 6 C a Ố . Then m C a b - c a b is a Radon measure which does not have a density in the space C a b . However using the density of m with values in C a h 3 c a z the Green s function for the problem can be constructed see 9 . In this note we apply this time-honoured technique to construct the tensor product of two commuting spectral measures p and Q. Let p have domain Xể and Q have domain JA We shall seek a space Y containing X as a dense subspace such that for each EeXt and F e Ji the .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.