Báo cáo toán học: "Algebraic models for positive operator valued measures "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Đại số mô hình cho các biện pháp điều hành tích cực Quý. | J. OPERATOR THEORY 7 1982 237-246 Copyright by INCREST 982 ALGEBRAIC MODELS FOR POSITIVE OPERATOR VALUED MEASURES SHIGERU ỈTOH 1. INTRODUCTION Dinculeanu and Foias 7 characterized the conjugate relation between probability measures in terms of the isomorphism of their algebraic models. Concerning other topics related to algebraic models we refer to Dinculeanu and Foias 6 and Foiaẹ 8 . Schreiber Sun and Bharucha-Reid 19 and Christensen and Bharucha--Reid 3 4 investigated algebraic models for measures induced by stochastic processes and for measures on Banach spaces. Christensen 5 gave the definition of algebraic models for positive operator valued measures and used it to prove an extension theorem 5 Theorem 3 for a consistent family of positive operator valued measures indexed by a directed set. In this paper we first introduce the concept of algebraic models for positive operator valued measures which is slightly different from that defined by Christensen 5 on separable Hilbert spaces. Then analogously to Dinculeanu and Foias 7 we give a characterization of the conjugate relation between positive operator valued measures by the isomorphism of their algebraic models. We also obtain a necessary and sufficient condition in order that a positive operator valued measure is conjugate to a spectral measure. 2. PRELIMINARIES Let H be a Hilbert space and Í2 j be a measurable space. Let B H be the set of bounded linear operators on H. Definition cf. Berberian 1 Definition 1 and Proposition 1 . A mapping E sđ - B H is called a normalized positive operator valued measure PO-measure if E satisfies the following conditions i For any Me sđ E M ỷ 0 238 SHIGERU ITOH ii E Q I the identity on H and 0 0 iii For any pairwise disjoint sequence Mn of sets in 32 EI I w-lim E M n l 7 i l where w-lim is the limit in the weak operator topology. If E M is an orthogonal projection for each M e sđ then E is called a spectral measure. Let 3ỉ 0 M e sđ Af 0 . For any 32 - measurable functions

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.