Báo cáo toán học: "Fundamental Reducibility of selfadjoint operators on Krein space "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Khử cơ bản của các nhà khai thác selfadjoint trên không gian Krein. | J. OPERATOR THEORY 8 1982 219-225 Copyright by INCREST 1982 FUNDAMENTAL REDUC1BIL1TY OF SELFADJOINT OPERATORS ON KREĨN SPACE BRIAN w. McENNIS 1. INTRODUCTION An indefinite inner product space X with inner product is called a Krein space if there exists an operator J on such that J J J-1 and the J-inner product x y j - Zv y x Jy makes X a Hilbert space. Such an operator J is called a fundamental symmetry . it determines and is determined by the fundamental decomposition X_ where x Z-F J X and X_ I J X are Hilbert spaces with the inner products and respectively. See 3 Chapter V . The topology on X is that given by the J-norin II x j -- Jx x 1 2. A Krein space has many different fundamental symmetries but the J-norms obtained are all equivalent 3 Corollary Theorem . Throughout this paper A will denote a bounded linear operator on X. Unless otherwise stated concepts involving an inner product will be defined in terms of the indefinite inner product. Thus A is the operator satisfying Ax y x A y for all X y e X and A is selfadjoint if A A . If there is a fundamental decomposition that reduces A then A is called fundamentally reducible and the study of A can be reduced to the study of the Hilbert space operators A I X and A. I x_. It follows from 3 Lemma and Theorem VIII. that A is fundamentally reducible if and only if AJ J A for some fundamental symmetry J. Various conditions for an operator to be fundamentally reducible have been given some of which are referred to in the notes to Chapter VIII of 3 More recently Bajasgalan 2 has given a condition for the fundamental reducibility of a positive operator in terms of its spectral function. In Theorem 1 below we give necessary and sufficient conditions for the fundamental reducibility of a selfadjoint operator A. Conditions iii and iv of 220 BRIAN w. McENNIS Theorem 1 involve the following growth condition on the resolvent IỊM c Wi 1 .--1 2 3 . where M is a constant independent of k and i is a .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.