Báo cáo toán học: "On the distance between similarity orbits "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Vào khoảng cách giữa quỹ đạo giống nhau. | J. OPERATOR THEORY 10 1983 65 75 Copyright by INCREST 1983 ON THE DISTANCE BETWEEN SIMILARITY ORBITS DOMINGO A. HERRERO 1. INTRODUCTION Consider the finite dimensional vector space C n 1 with its usual inner product and Hilbert space norm and let M C denote the Banach algebra of all n X n complex matrices under the norm IIz4 max y4 v xe C x 1 . If A BeM C then a straightforward computation shows that 1 t B ll n n for all A B 6 M C such that A is similar to A and B is similar to B where t 7 denotes the trace of R e M C . The main result of this note says that if A is a cyclic operator this is equivalent to saying that the minimal monic polynomial of A coincides with d4 Ấ determinant AỴ and B is not a multiple of the identity then the above lower bound cannot be improved. More precisely if for T e M C f T WTW-1 We M C is invertible denotes the similarity orbit of T then we have the following Theorem 1. If A Be M C n 2 A is cyclic and B is not a multiple of the identity then dist Gi y B f inf M - B ll Á e 9 A B e 9 B -- . n The case when A ẰI for some complex Ằ will be treated separately Theorem 8 below . An example will illustrate about the difficulties of the general case. 5-1105 66 DOMINGO A. HERRERO Several consequences can be derived from Theorem 1. Among others we have Proposition 2. If jVeM C is a normal operator such that 1 ea N the spectrum of N and a N . 6 c Re z 0 then dist M Ổ e M C Q 0 . 2pi If A is a nilpotent equivalently ff 1 - 0 ơ ổ 0 1 and rank-ổ 1 then the result of Theorem 1 follows from Proposition of 4 see also 2 Example . If N is positive hermitian then the result of Proposition 2 is Proposition of the same reference. For future purposes it will be convenient to introduce the notation T R to indicate that T are similar operators. The main result of this note was developed during a short visit to the University of California at San Diego. The author is deeply indebted to Professors L. c. Chadwick and J. w. Helton for several helpful

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
272    23    1    30-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.