Báo cáo toán học: "Quasitriangular extensions of C*-algebras and problems on joint quasitriangularity of operators "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Quasitriangular phần mở rộng của C *- đại số và vấn đề là các nhà khai thác chung của quasitriangularity. | J. OPERATOR THEORY 10 1983 167-205 Copyright by INCREST 1983 QUASITRIANGULAR EXTENSIONS OF C -ALGEBRAS AND PROBLEMS ON JOINT QUASITRIANGULARITY OF OPERATORS NORBERTO SALINAS 1. INTRODUCTION In this paper we shall be concerned with the question of when an n-tuple of operators on Hilbert space is jointly quasitriangular. We recall that an 71-tuple Tỵ . T of operators on a Hilbert space 34 is said to be jointly quasitriangular cf. 5 2 19 if there exists an increasing sequence p of finite rank projections on .TC that tends strongly to the identity operator Ijp and such that lim l PmỴTkPm 0 for 1 k n. Since the separability m- oo of 34 is implicit in this definition and if 24 is finite dimensional all n-tuples of operators on 24 are jointly quasitriangular we assume throughout the paper that 24 is an infinite dimensional separable Hilbert space. The set of all jointly quasitriangular n-tuples of operators on 34 will be denoted by QT . One of our main objectives in the present paper is to generalize to the case on n-tuples of operators various results obtained in 2 3 and 4 for the case of single operators. This program was started in 29 where attention was focused in proving invariant subspace theorems for commuting n-tuples of operators. The n-tu-ples that we consider there are not necessarily commuting and since our aim in this paper is different we obtain other generalizations that were not given in 29 . Given an operator T on 34 let CO_ T be the set of those complex numbers Ấ such that T Ấ is essentially left invertible and of negative Fredholm index. Alternatively Aea _ T if and only if T Ấ is essentially left invertible but T Ấ K is right invertible for no compact operator K. It was shown by Douglas and Pearcy 16 Theorem that OJ_ T 0 whenever Te QTr Apostol Foias and Voicu-lescu in 2 Theorem completed the spectral characterization of quasitriangularity by proving that the converse of this result is valid. They also succeeded in computing the distance from a

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
15    22    4    02-12-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.