Báo cáo toán học: "The Ito-Clifford integral. IV: A Randon-Nikodym theorem and bracket processes "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Các thiếu Ito-Clifford. IV: Một Tế-Nikodym định lý và khung Processes. | Copyright by INCREST 1984 J. OPERATOR THEORY 11 1984 255-271 THE IT0-CLIFFORD INTEGRAL. IV A RADON-NIKODYM THEOREM AND BRACKET PROCESSES c. BARNETT R. F. STREATER and I. F. WILDE 0. INTRODUCTION The construction and various properties of the Ito-Clifford stochastic integral have been discussed in 1 2 3 . In particular it was shown in 1 that any centred t L2-martingale is given as an Ito-Clifford stochastic integral xt Y s dlPs 0 where Ts 0 s is the Fermi-field. It was also shown in 1 that stochastic integrals of the form dx can be defined as elements of L2 7T the non-commu-tative L2-space associated with the Clifford probability gage space. We consider the relationship between the stochastic integral with respect to and that with respect to X. Specifically we prove a Radon-Nikodym theorem in the form ị dX Tdff . Using the Doob-Meyer decomposition of the submartingale x x given in 1 we define the pointed-bracket jU-process Xt Yty associated with z 2-martin-gales Xt and T . The stochastic integral àx is shown to be characterized as a process in terms of pointed-bracket processes. These results parallel those of standard . commutative probability theory see for example 8 9 . In Sections 1 and 2 we review and generalize some of the results from 1 The stochastic integral dAf is defined in Section 3 this being a simplified version of that in 1 The Radon-Nikodym theorem is presented in Section 4 and in Section 5 an analogous result for stochastic integrals with respect to Wick martingales is proved. The pointed-bracket process is considered in Section 6 together with a characterization of the stochastic integral as a process. 256 c. BARNETT R. F. STREATER and 1. F. WILDE Finally in Section 7 we give a summary of the analogous results valid for left rather than right integrals. A Doob-Meyer decomposition and stochastic integration with respect to martingales over an arbitrary probability gage space is considered in 4 1. FOCK SPACE AND THE CLIFFORD ALGEBRA We recall .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.