Báo cáo toán học: "Homotopy invariance of the analytic index of signature operators over C*-algebras "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Bất biến đồng luân của các chỉ số phân tích của các nhà khai thác chữ ký trên C *- đại số. | Copyright by INCREST 1985 J. OPERATOR THEORY 14 1985 . 113- 127 HOMOTOPY INVARIANCE OF THE ANALYTIC INDEX OF SIGNATURE OPERATORS OVER C -ALGEBRAS JEROME KAM1NKER and JOHN G. MILLER INTRODUCTION A proof of the Novikov conjecture for finitely generated free abelian groups was given by Lusztig in 6 using the Atiyah-Singer Index Theorem for families of operators. It was observed by Miscenko 11 that a family of elliptic operators parametrized by a compact space X can be viewed as a single operator over the c -algebra C X . In 6 the space X was the M-dimensional torus T and the operators were signature operators. Since C T C Z Miscenko was led to consider signature operators over the algebras c r where r is a countable discrete group. In this paper we generalize some of the results in 6 to the non-commutative case. The methods used are based on 6 and 14 and on the theory of Hilbert modules as developed by sevểral people . 10 8 . This latter theory allows great simplification of previous work on these questions. Our goal was to prove the homotopy invariance of the signature operator considered as an element of K-homology on a closed manifold. This result is expressed in the form of a commuting diagram which in current terminology relates the Novikov Conjecture to the Strong Novikov Conjecture 13 Our main result Theorem corresponds roughly to Theorem 3 p. 24 Part 2 of Kasparov s Conspectus 7 . In Section 6 we indicate the changes necessary to handle algebras without unit. This has applications to homotopy invariance properties of the signature operator along the leaves of a foliation of a compact manifold as suggested to us by Paul Baum and Alain Connes. We briefly sketch how a Theorem of theirs also follows from our results. 1. PRELIMINARIES ON HILBERT MODULES Definition . LetX be a c -algebra with or without unit. A Hilbert X-module is a complex vector space M which is a right X-module provided with an X-valued 8 -1086 114 JEROME KAMINKER and JOHN G. MILLER .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.