Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 7

Tham khảo tài liệu 'advanced mathematical methods for scientists and engineers episode 3 part 7', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | What would happen if we continued this method Since y x c1x is a solution of the Ricatti equation we can make the substitution y x c x U X 1 which will lead to a solution for y which has two constants of integration. Then we could repeat the process substituting the sum of that solution and 1 u x into the Ricatti equation to find a solution with three constants of integration. We know that the general solution of a first order ordinary differential equation has only one constant of integration. Does this method for Ricatti equations violate this theorem There s only one way to find out. We substitute Equation into the Ricatti equation. u 1 2x 2 I x ------ 1 u 1 2 1 u ---------u 1 2 u -------u 1 The integrating factor is I x e2 c-x e-2log c-x 1 2. Upon multiplying by the integrating factor the equation becomes exact. d 1 1 dx c x 2 c x 2 2 1 . 2 u c x 2 1 b c x 2 u x c b c x 2 Thus the Ricatti equation has the solution y x 1 1 c x x c b c x 2 1014 It appears that we we have found a solution that has two constants of integration but appearances can be deceptive. We do a little algebraic simplification of the solution. I 1 x c x b c x 1 c x b c x 1 1 y J b c x 1 c x b y x b c x 1 1 y x c 1 b x This is actually a solution namely the solution we had before with one constant of integration namely c 1 b . Thus we see that repeated applications of the procedure will not produce more general solutions. 3. The substitution u y T au gives us the second order linear homogeneous differential equation u j a b u acu 0. a The solution to this linear equation is a linear combination of two homogeneous solutions u1 and u2. u c1u1 x c2u2 x The solution of the Ricatti equation is then c1u 1 x c2u 2 x y a x ciui x c2u2 x . .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
463    20    1    28-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.