Analytic Number Theory A Tribute to Gauss and Dirichlet Part 12

Tham khảo tài liệu 'analytic number theory a tribute to gauss and dirichlet part 12', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 212 PER SALBERGER j 4 that 2 d 2 f -4 C1C2C3Ci 5-3 8Vd and d8-g d C2C3C4 4 C1C2C3C4 5-g d 4. Hence if we sum over all dyadic intervals Cj 2Cj 1 j 4 for 2-powers Cj as above and argue as in op. cit. we will get a set of xd B15 3 2 d 16 5 4 rational lines on X such that there are Odj B15g d 16 5 4 rational points of height B on the union of all geometrically integral hyperplane sections n n X with H n 5B 1 4 which do not lie on these lines. We now combine this with and . Then we conclude that there are xd B15g d 16 5 4 B5 2 points in S X B outside these lines if X is not a cone of a Steiner surface and - B15g d 16 5 4 B11 4 such points if X is a cone of a Steiner surface. To finish the proof note that max 15g d 16 5 4 5 2 max 45 16 vd 5 4 5 2 in the first case and that max 15g d 16 5 4 11 4 1205 448 in the second case. 4. The points on the lines We shall in this section estimate the contribution to N X B from the lines in Theorem . Lemma . X c P4 be a geometrically integral projective threefold over Q of degree d 2. Let M be a set of Od B5 2 rational lines A on X each contained in some hyperplane n c P4 of height 5B 1 4 and N Uagma B be the number of points in S X B n Uagm a Q . Then the following holds. a N Ua ma B Od e B11 4 e B5 2 3 2d . b N Ua mA B Od e B5 2 3 2d e if X is not a cone over a curve. c N Uagma B Odj B5 2 B9 4 3 2d if there are only finitely many planes on X . Proof. We shall for each A G M choose a hyperplane n A c P4 of minimal height containing A . Then H n A kH A 1 3 for some absolute constant k by . The contribution to N UagMa B from all A G M where n A n X is not geometrically integral is Odj B11 4 in general and Odj B5 2 if X is not a cone over a curve see . The contribution from the lines A G M with N A B 1 is Od B5 2 . We may and shall therefore in the sequel assume that n A n X is geometrically integral and N A B 2 for all A G M. From N A B 2 we deduce that H A 2B2 N A B c B2 H A and N Ua ma B N A B B2 H A -1 AeM .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.