Applied Computational Fluid Dynamics Techniques - Wiley Episode 1 Part 8

Tham khảo tài liệu 'applied computational fluid dynamics techniques - wiley episode 1 part 8', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | SIMPLE EULER NAVIER-STOKES solvers 163 This is the same as central differencing A stability analysis of the RHS ri -- - ui 1 - Ui-1 2h indicates that only every second node is coupled allowing zero-energy or chequerboard modes in the solution. Therefore stabilizing terms have to be added to re-couple neighbouring nodes. The two most common stabilizing terms added are as follows. 1. Terms of second order h2 d2 dx2 which result in an additional RHS term of Ui 1 - 2ui Ui-1 which equals 4 for the -1 1 -1 chequerboard pattern on a uniform mesh shown in Figure . Most TVD schemes use this type of stabilization term. Figure . Chequerboard mode on a uniform 1-D grid 2. Terms of fourth order h4 d4 dx4 which result in an additional RHS term of Ui 2 - 4ui 1 6ui - 4ui-1 Ui-2 which equals 16 for the -1 1 -1 chequerboard pattern on a uniform mesh shown in Figure . Observe that this type of stabilization term has a much more pronounced effect than second-order terms. Therefore one may use much smaller constants when adding them. The fourth-order operator can be obtained in several ways. One obvious choice is to perform two V2-passes over the mesh Jameson et al. 1986 Mavriplis and Jameson 1990 . Another option is to first obtain the gradients of u at points and then to approximate the third derivatives by taking a difference between first derivatives obtained from the gradients and the first derivatives obtained directly from the unknowns Peraire et al. 1992a . The implications of choosing either of these approaches will be discussed in more depth in Chapter 10. 164 APPLIED COMPUTATIONAL FLUID DYNAMICS TECHNIQUES . EQUIVALENCY WITH FVM Before going on the GFEM using linear elements will be shown to be equivalent to the FVM. Integration by parts in yields ri - N V- Nj F ũ j dQ Ị V Ni Nj F ũ j dQ Ị . As seen from Section for linear triangles this integral reduces to r A VN Ẹ F ũj 3 2 Si i ẸF uj jel jel and in particular for node a in .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
476    17    1    27-11-2024
12    25    1    27-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.