Diffusion Solids Fundamentals Diffusion Controlled Solid State Episode 1 Part 6

Tham khảo tài liệu 'diffusion solids fundamentals diffusion controlled solid state episode 1 part 6', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Vacancy Mechanism of Self-diffusion 113 from giving a comprehensive review of all methods. Instead we rather strive for a physical understanding of the underlying ideas we consider explicitely low vacancy concentrations and cubic coordination lattices. Then the averages in Eq. refer to one complete encounter. Since for a given value of n there are n j pairs of jump vectors separated by j jumps and since all vacancy-tracer pairs immediately after their exchange are physically equivalent we introduce the abbreviation cos Sj cos Si j and get f 1 lim 2ầí j cosSj . n n j 1 Here cos Sj is the average of the cosines of the angles between all pairs of vectors separated by j jumps in the same encounter. With increasing j the averages cos Sj converge rapidly versus zero. Executing the limit n TO Eq. can be written as f 1 2 f cos Sj j i 1 2 cos Si cos S2 . . To get further insight we consider - for simplicity reasons - the x-dis-placements of a series of vacancy-tracer exchanges. For a suitable choice of the x-axis only two x-components of the jump vector need to be considered2 which are equal in length and opposite in sign. Since then cos Sj 1 we get from Eq. f 1 2 p p- where pt p- denote the probabilities that tracer jump j occurs in the same opposite direction as the first jump. If we consider two consecutive tracer jumps say jumps 1 and 2 the probabilities fulfill the following equations p p-p- p- p p- p-pt. Introducing the abbreviations tj pt p- and t1 t we get t2 pt pt p p- pt p t2 . - - y - - y t t From this we obtain by induction the recursion formula tj tj . 2 Jumps with vanishing x-components can be omitted. 114 7 Correlation in Solid-State Diffusion The three-dimensional analogue of Eq. was derived by Compaan AND Haven 20 and can be written as cos6j cosff j where 6 is the angle between two consecutive tracer jumps. With this recursion expression we get from Eq. f 1 2 cos6 cosff cosỚ 2 . . The .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.