Báo cáo toán học: "The Prime Power Conjecture is True for n

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: The Prime Power Conjecture is True for n | The Prime Power Conjecture is True for n 2 000 000 Daniel M. Gordon Center for Communications Research 4320 Westerra Court San Diego CA 92121 gordon@ Submitted August 11 1994 Accepted August 24 1994. Abstract The Prime Power Conjecture PPC states that abelian planar difference sets of order n exist only for n a prime power. Evans and Mann 2 verified this for cyclic difference sets for n 1600. In this paper we verify the PPC for n 2 000 000 using many necessary conditions on the group of multipliers. AMS Subject Classification. 05B10 1 Introduction Let G be a group of order v and D be a set of k elements of G. If the set of differences di dj contains every nonzero element of G exactly A times then D is called a v k A -difference set in G. The order of the difference set is n k A. We will be concerned with abelian planar difference sets those with G abelian and A 1. The Prime Power Conjecture PPC states that abelian planar difference sets of order n exist only for n a prime power. Evans and Mann 2 verified this for cyclic difference sets for n 1600. In this paper we use known necessary conditions for existence of difference sets to test the PPC up to two million. Section 2 describes the tests used and Section 3 gives details of the computations. All orders not the power of a prime were eliminated providing stronger evidence for the truth of the PPC. THE ELECTRONIC .JOURNAL OF COMBINATORICS 1 1994 R6 2 2 Necessary Conditions We begin by reviewing known necessary conditions for the existence of planar difference sets. The oldest is the Bruck-Ryser-Chowla Theorem which in the case we are interested in states Theorem 1 If n 1 2 mod 4 and the squarefree part of n is divisible by a prime p 3 mod 4 then no difference set of order n exists. A multiplier is an automorphism a of G which takes D to a translate g D of itself for some g 2 G. If a is of the form a x tx for t 2 z relatively prime to the order of G then a is called a numerical multiplier. Most .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.