Báo cáo toán học: "THE INDEPENDENCE NUMBER OF DENSE GRAPHS WITH LARGE ODD GIRTH"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: THE INDEPENDENCE NUMBER OF DENSE GRAPHS WITH LARGE ODD GIRTH. | THE INDEPENDENCE NUMBER OF DENSE GRAPHS WITH LARGE ODD GIRTH James B. Shearer Department of Mathematics IBM . Watson Research Center Yorktown Heights NY 10598 JBS at Submitted January 31 1995 Accepted February 14 1995 Abstract. Let G be a graph with n vertices and odd girth 2k 3. Let the degree of a vertex v of G be d1 v . Let G be the independence number of G. Then we show a G 2- v Denley 1 . d1 v v2G k-1 k . This improves and simplifies results proven by AMS Subject Classification. 05C35 Let G be a graph with n vertices and odd girth 2k 3. Let di v be the number of points of degree i from a vertex v. Let a G be the independence number of G. We will prove lower bounds for a G which improve and simplify the results proven by Denley 1 . We will consider first the case k 1. We need the following lemma. Lemma 1 Let G be a triangle-free graph. Then G X d1 v 1 di v d2 v . v2G Proof. Randomly label the vertices of G with a permutation of the integers from 1 to n. Let A be the set of vertices v such that the minimum label on vertices at distance 0 1 or 2 from v is on a vertex at distance 1. Clearly the probability that A contains a vertex v is d1 v 1 d1 v d2 v . Hence the expected size of A is Xd1 v 1 d1 v d2 v . v2G Furthermore A must be an independent set since if A contains an edge it is easy to see that it must lie in a triangle of G a contradiction. The result follows at once. Typeset by A 5-TpX 1 THE ELECTRONIC JOURNAL OF COMBINATORICS 2 1995 N2 2 We can now prove the following theorem. Theorem 1. Suppose G contains no 3 or 5 cycles. Let d be the average degree of vertices of G. Then __ G ựnd 2. Proof. Since G contains no 3 or 5 cycles we have G di v consider the neighbors of v and G 1 d2 v consider v and the points at distance 2 from v for any vertex v of G. Hence G di v 1 di v d2 v di v 2 G by lemma 1 and the preceding remark . Therefore G 2 nd 2 or a G Iid 2 as claimed. This improves Denley s Theorems 1 and 2. It is sharp for the regular .

Bấm vào đây để xem trước nội dung
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.